A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Signal Detection Based on Separable CNN for OTFS Communication Systems. | LitMetric

Signal Detection Based on Separable CNN for OTFS Communication Systems.

Entropy (Basel)

The School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper proposes a low-complexity signal detection method for orthogonal time frequency space (OTFS) communication systems, based on a separable convolutional neural network (SeCNN), termed SeCNN-OTFS. A novel SeparableBlock architecture is introduced, which integrates residual connections and a channel attention mechanism to enhance feature discrimination and training stability under high Doppler conditions. By decomposing standard convolutions into depthwise and pointwise operations, the model achieves a substantial reduction in computational complexity. To validate its effectiveness, simulations are conducted under a standard OTFS configuration with 64-QAM modulation, comparing the proposed SeCNN-OTFS with conventional CNN-based models and classical linear estimators, such as least squares (LS) and minimum mean square error (MMSE). The results show that SeCNN-OTFS consistently outperforms LS and MMSE, and when the signal-to-noise ratio (SNR) exceeds 12.5 dB, its bit error rate (BER) performance becomes nearly identical to that of 2D-CNN. Notably, SeCNN-OTFS requires only 19% of the parameters compared to 2D-CNN, making it highly suitable for resource-constrained environments such as satellite and IoT communication systems. For scenarios where higher accuracy is required and computational resources are sufficient, the CNN-OTFS model-with conventional convolutional layers replacing the separable convolutional layers-can be adopted as a more precise alternative.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385417PMC
http://dx.doi.org/10.3390/e27080839DOI Listing

Publication Analysis

Top Keywords

communication systems
12
signal detection
8
based separable
8
otfs communication
8
separable convolutional
8
detection based
4
separable cnn
4
cnn otfs
4
systems paper
4
paper proposes
4

Similar Publications