Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diamond-copper composites, due to their exceptional thermal conductivity, hold significant potential in the field of electronic device thermal management. Hot-press sintering is a promising fabrication technique with industrial application prospects; however, the thermal conductivity of composites prepared by this method has yet to reach optimal levels. In this study, tungsten was deposited on the surface of diamond particles by magnetron sputtering as an interfacial transition layer, and hot-press sintering was employed to fabricate the composites. The findings reveal that with prolonged annealing time, tungsten gradually transformed into WC and WC, significantly enhancing interfacial bonding strength. When the diamond volume content was 50% and the interfacial coating consisted of 2 wt.% W, 92 wt.% WC, and 6 wt.% WC, the composite exhibited a thermal conductivity of 640 W/(m·K), the highest value reported among hot-press sintered composites with diamond content below 50%. Additionally, the AMM (Acoustic Mismatch Model) and DMM (Diffusion Mismatch Model) models were utilized to calculate the interfacial thermal conductance between different phases, identifying the optimal interfacial structure as diamond/WC/WC/WC/Cu. This composite material shows potential for application in high-power electronic device cooling, thermal management systems, and thermoelectric conversion, providing a more efficient thermal dissipation solution for related devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387508PMC
http://dx.doi.org/10.3390/ma18163882DOI Listing

Publication Analysis

Top Keywords

thermal conductivity
16
diamond-copper composites
8
composites prepared
8
electronic device
8
thermal management
8
hot-press sintering
8
content 50%
8
wt% wt%
8
mismatch model
8
thermal
7

Similar Publications

We report an anomalous temperature-induced transition in thermal conductivity in the germanene monolayer around a critical temperature = 350 K. Equilibrium molecular dynamics simulations reveal a transition from ∼ scaling below the to ∼ above, contrasting with conventional ∼ behavior. This anomalous scaling correlates with the long-scale characteristic timescale obtained from double exponential fitting of the heat current autocorrelation function.

View Article and Find Full Text PDF

Dual Lithium Salt Derived Favorable Interface Layer Enables High-Performance Polycarbonate-Based Composite Electrolytes for Stable and Safe Solid Lithium Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.

View Article and Find Full Text PDF

Thermally stable and highly wetted asymmetric porous nanocellulose/poly(m-phenylene isophthalamide) composite separators for high-performance lithium-ion batteries.

Int J Biol Macromol

September 2025

Jiangsu Provincial Key Lab for The Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Aramid films are potential separator candidates for high-safety lithium-ion batteries (LIBs) due to their inherent flame retardancy and outstanding thermal stability. However, both weak liquid electrolyte wettability and poor mechanical properties of aramid separators for lithium-ion batteries result in low ionic conductivity and unsatisfactory electrochemical performance for LIBs. Herein, a novel asymmetric porous composite separator composed of a relatively dense nanocellulose (CNC) layer and a porous poly(m-phenylene isophthalamide) (PMIA) supporting layer has been fabricated by using a water-induced phase conversion process.

View Article and Find Full Text PDF

Discarded sericultural mulberry branch based triple layer composite phase change material with lignin enhanced thermal management capability.

Int J Biol Macromol

September 2025

Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China. Electronic address:

With the exhaustion of fossil fuels, prior phase change materials are characterized by such drawbacks as poor thermal conductivity, weak shape stability, and high costs. Therefore, the preparation of phase change materials with brilliant thermal-insulating properties, high thermal conductivity, and leakage-free properties has emerged as a crucial research focus. Herein, a sericultural mulberry branch-derived (SMB) composite phase change material was prepared by deep eutectic solvent pretreated SMB and vacuum-assisted impregnated paraffin wax with cupric oxide (CuO).

View Article and Find Full Text PDF

Spiro-OMeTAD has remained the benchmark hole-transporting material (HTM) in state-of-the-art perovskite solar cells, owing to its favorable energy level alignment and excellent interfacial compatibility. However, its practical implementation is critically hindered by the intrinsic instabilities introduced by conventional dopants such as lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 4-tert-butylpyridine (tBP). While these dopants enhance electrical conductivity, they concurrently initiate multiple degradation pathways-including ionic migration, radical deactivation, and moisture/thermal-induced morphological failure-thereby compromising device longevity and reproducibility.

View Article and Find Full Text PDF