98%
921
2 minutes
20
This study investigates the application of the Keyhole-Tungsten Inert Gas Welding (K-TIG) hot-wire filling welding technique with mechanical arc oscillation to weld a 95 mm-thick Ti-6Al-4V titanium alloy plate. The root layer thickness achieved with this technique reaches up to 17 mm, with an average filling thickness of 2.5 mm. The weld bead displays a smooth, shiny appearance, and no significant welding defects are observed in the cross-section of the welded joint. Experimental results show that the welded joint consists of the α phase in different forms, as well as fine α+β microstructures. Compared to the base material, both the weld metal and the heat-affected zone exhibit a lower crystallographic texture strength, with more complex texture types. The impact toughness of the welded joint is excellent, with no significant weaknesses. The impact toughness of the weld metal significantly surpasses that of both the base material and the heat-affected zone. The engagement strengthening effect induced by high-current filling plays a crucial role in enhancing the impact toughness of the weld metal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387930 | PMC |
http://dx.doi.org/10.3390/ma18163848 | DOI Listing |
iScience
September 2025
State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.
View Article and Find Full Text PDFAdv Mater
September 2025
Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
Despite significant advancements in aerogels science, the fabrication of high-performance aerogels with their plastic processability remains unexplored owing to their inherent trade-off between skeletal rigidity and transformable processability. Herein, a universal solubility-pKa coupling-effect to engineer high-performance thermoplastic nylon aerogel family with excellent thermomechanical processing performance is proposed. By modulating solubility parameters and acid dissociation constants in nylon-solvent systems, it is precisely control crystallization to assemble interlaced 1D nanofiber skeletons, yielding nylon aerogels that integrate a high specific surface area (226 m g), exceptional compressive modulus (12.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China.
In high-altitude corrosive environments, weathering steel is widely applied due to its excellent corrosion resistance. However, the welded joint regions, where the chemical composition and microstructure undergo changes, are susceptible to the corrosion-induced degradation of mechanical properties. This study investigates the corrosion-mechanical synergistic degradation behavior of a 16 mm thick Q500 qENH base metal and its V-type and Y-type welded joint specimens.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Faculty of Materials Engineering and Industrial Computer Science, AGH University of Science and Technology in Krakow, 30-059 Krakow, Poland.
The subject of this research was the development of technology for welding and the heat treatment of butt-welded joints of thin-walled Inconel 718 alloy tubes, a process based on orbital TIG welding without a filler metal. The developed technology allows favorable conditions to obtain the appropriate hardness and mechanical properties in the weld area required by AMS 5589. In the tests, the microstructure and mechanical properties were evaluated.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Department of Vehicle and Machine Mechatronics, Faculty of Mechanical Engineering, Opole University of Technology, Prószkowska Street 76, 45-758 Opole, Poland.
Passenger cars have unibody constructions, which means that their collision damage often involves key structural components. Successful repair requires the selection of appropriate technology and adherence to quality standards, which directly affects the safety of the vehicle's continued operation. A commonly used method is a system of replacing damaged components with new ones, while repair by molding and forming is also possible-provided the original structural features are preserved.
View Article and Find Full Text PDF