Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The cytosine methylation status of symmetric and asymmetric sites of promoters of the genes encoding the membrane-bound subunits C and D of succinate dehydrogenase (SDH) was assessed during the germination of maize ( L.) seeds, when the stored lipids were utilized and the glyoxylate cycle produced succinate. The results of bisulfite sequencing of the promoters of genes in maize scutella allowed us to determine the cytosine methylation status in the CG, CNG, and CNN sites. The observed site-specific changes in the cytosine methylation status of the and genes encoding the SDH subunit C indicate an important role in controlling their transcriptional activity. In contrast, no marked changes were observed in the methylation of promoters of the gene, encoding SDH subunit D. The analysis of changes in the activity of the CG, CNG, and CNN DNA methyltransferases revealed the redistribution of activity between CG, CNG, and CNN DNA methyltransferases toward an increase in the proportion of CG DNA methyltransferases. The locus-specific methylation dynamics of SDH membrane subunit promoters during maize germination have been demonstrated. It is concluded that the changes in the cytosine methylation status may play a role in the regulation of the expression of the genes in the course of the conversion of succinate formed in the glyoxylate cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386843PMC
http://dx.doi.org/10.3390/ijms26168010DOI Listing

Publication Analysis

Top Keywords

cytosine methylation
20
methylation status
16
changes cytosine
12
promoters genes
12
genes encoding
12
cng cnn
12
dna methyltransferases
12
site-specific changes
8
methylation promoters
8
subunits succinate
8

Similar Publications

Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.

View Article and Find Full Text PDF

NSUN6 Promotes Gastric Cancer Progression by Stabilizing CEBPZ mRNA in a mC-Dependent Manner.

Appl Biochem Biotechnol

September 2025

Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.

Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.

View Article and Find Full Text PDF

The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate whether Jianpi-Zishen Formula (JPZS) modulates the Treg/Th17 balance in MRL/lpr mice through regulation of DNA methyltransferase 1 (DNMT1)-mediated forkhead box P3 (Foxp3) methylation, and to elucidate its potential mechanism for improving immune homeostasis in systemic lupus erythematosus (SLE).

Methods: Forty-eight female MRL/lpr mice were randomized into six groups (n=8/group): JPZS (low/medium/high doses), 5-aza-CdR (DNMT inhibitor), DC_517 (DNMT1 inhibitor), and model control. Eight C57BL/6 mice served as healthy controls.

View Article and Find Full Text PDF

The spatial resolution of omics analyses is fundamental to understanding tissue biology. The capacity to spatially profile DNA methylation, which is a canonical epigenetic mark extensively implicated in transcriptional regulation, is lacking. Here we introduce a method for whole-genome spatial co-profiling of DNA methylation and the transcriptome of the same tissue section at near single-cell resolution.

View Article and Find Full Text PDF