98%
921
2 minutes
20
Silica/alumina composite particles were synthesized via the sol-gel method to promote fine dispersion and homogenous mixing. Aluminum chloride hydroxide served as the alumina precursor, while amorphous silica, obtained from rice husk, was directly incorporated into the alumina sol. Following synthesis, the material was calcined at 1000 °C, yielding an α-cristobalite form of silica and corundum-phase alumina. These hybrid particles were introduced into polymer composites at reinforcement levels of 1 wt.%, 3 wt.%, and 5 wt.%. Mechanical behavior was evaluated through three-point bending tests, Shore D hardness measurements, and controlled-energy impact testing. Among the formulations, the 3 wt.% composite exhibited optimal performance, displaying the highest flexural modulus and strength, along with enhanced impact resistance. Hardness increased with rising particle content. Fractographic analysis revealed that the 3 wt.% loading produced a notably rougher fracture surface, correlating with improved energy absorption. In contrast, the 5 wt.% composite, although harder than the matrix and other composites, exhibited diminished toughness due to particle agglomeration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385863 | PMC |
http://dx.doi.org/10.3390/gels11080575 | DOI Listing |
Soft Matter
September 2025
Nestlé Product Technology Centre, York, YO31 8FY, UK.
Particles with some degree of hydrophilicity are known to aggregate when directly dispersed in non-aqueous media. Proteins are generally insoluble in oil and have complex surface properties, but they may form networks in oil like more simple colloidal particles, depending on particle size and surface hydrophilicity. Here, the particle size of pea protein isolate (PPI) particles in oil was reduced to submicron sizes by stirred media milling.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Major in Bionano Engineering, School of Bio-Pharmaceutical Convergence, Hanyang University, Ansan, 155-88, Republic of Korea.
Membrane proteins are essential bio-macromolecules involved in numerous critical biological processes and serve as therapeutic targets for a wide range of modern pharmaceuticals. Small amphipathic molecules, called detergents or surfactants, are widely used for the isolation and structural characterization of these proteins. A key requirement for such studies is their ability to maintain membrane protein stability in aqueous solution, a task where conventional detergents often fall short.
View Article and Find Full Text PDFLangmuir
September 2025
Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225127, Jiangsu, China.
To expand the application scope of carbon steel, imparting superhydrophobicity to its surface offers an effective strategy to overcome its inherently poor corrosion resistance. However, in marine environments, conventional superhydrophobic coatings often suffer from limited mechanical durability and inadequate long-term corrosion protection. In this study, a durable superhydrophobic bilayer coating composed of PDMS-MWCNTs (top layer) and PDMS (bottom layer) was developed to address these challenges.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China.
Objectives: To investigate the effect of cardiomyocytes-derived exosomes on lipopolysaccharide (LPS)-induced cardiomyocyte injury and its mechanism.
Methods: Exosomes isolated from rat cardiomyocytes with or without LPS treatment were co-cultured with rat lymphocytes. The lymphocytes with or without exosome treatment were co-cultured with LPS-induced rat cardiomyocytes for 48 h.
Protein Pept Lett
September 2025
Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.
Background: Bacillus thuringiensis Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores via α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.
Objective: This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.