Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intracranial aneurysms are a serious cerebrovascular condition with a risk of subarachnoid hemorrhage due to rupture, leading to high mortality and morbidity. Flow Diverter Stents (FDSs) have become an important endovascular treatment option for unruptured large or wide-neck aneurysms. Hemodynamic factors significantly influence treatment outcomes in aneurysms treated with FDSs, and Computational Fluid Dynamics (CFD) has been widely used to evaluate post-deployment flow characteristics. However, conventional wire-resolved CFD methods require extremely fine meshes to reconstruct individual FDS wires, resulting in prohibitively high computational costs. This severely limits their feasibility for use in clinical treatment planning, where fast and robust simulations are essential. To address this limitation, we developed a computationally efficient CFD method that incorporates a porous media model accounting for local variations in wire density after FDS deployment. Based on Virtual Stent Simulation, the FDS region was defined as a hollow cylindrical domain with spatially varying resistance derived from cell-specific wire density. We validated the proposed method using 15 clinical cases, demonstrating close agreement with conventional wire-resolved CFD results. Relative errors in key hemodynamic parameters, including velocity, shear rate, inflow rate, and turnover time, were within 5%, with correlation coefficients exceeding 0.98. The number of grid elements, the data size, and total analysis time were reduced by over 90%. The method also allowed comparison between Total-Filling (OKM Grade A) and Occlusion (Grade D) cases, and evaluation of different FDS sizing, positioning, and coil-assisted strategies. The proposed method enables practical and efficient CFD analysis following FDS treatment and supports hemodynamics-based treatment planning of aneurysms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383731PMC
http://dx.doi.org/10.3390/bioengineering12080881DOI Listing

Publication Analysis

Top Keywords

efficient cfd
12
treatment planning
12
computationally efficient
8
cfd method
8
flow diverter
8
conventional wire-resolved
8
wire-resolved cfd
8
wire density
8
proposed method
8
cfd
6

Similar Publications

CFD Evaluation of Far-UVCand Air Cleaning Technologies in Classrooms without Mechanical Ventilation.

J Hazard Mater

September 2025

Architectural Engineering Department, Pennsylvania State University, University Park, PA, USA. Electronic address:

Far-UVC systems and air cleaners are effective strategies for controlling airborne pathogen transmission, particularly in densely occupied spaces with insufficient ventilation, such as school classrooms. This study evaluates the disinfection performance and ozone (O) formation of different far-UVC systems and air cleaners in a standard-sized classroom using computational fluid dynamics (CFD) simulation. Results show that ceiling-mounted far-UVC systems reduce airborne pathogen exposure by up to 30 % more than upper-room and wall-mounted configurations, based on intake fractions and room-average concentrations.

View Article and Find Full Text PDF

In engineering applications where extreme environmental conditions are becoming increasingly prevalent, the dynamic behavior of liquid droplets on solid surfaces plays a vital role in determining system efficiency and reliability. Particularly in scenarios such as anti-icing, anticorrosion, and self-cleaning, the fabrication of micro/nanostructured surfaces with exceptional hydrophobic properties has emerged as a critical strategy. However, constrained by the technical limitations of current experimental equipment in microscale observation and the capture of transient droplet impact processes, the influence mechanism of statistical roughness parameters (skewness and kurtosis) on droplet bouncing remains underexplored.

View Article and Find Full Text PDF

Image-based modeling is essential for understanding cardiovascular hemodynamics and advancing the diagnosis and treatment of cardiovascular diseases. Constructing patient-specific vascular models remains labor-intensive, error-prone, and time-consuming, limiting their clinical applications. This study introduces a deep-learning framework that automates the creation of simulation-ready vascular models from medical images.

View Article and Find Full Text PDF

Accurate assessment of intracranial aneurysm rupture risk, particularly in Middle Cerebral Artery (MCA) aneurysms, relies on a detailed understanding of patient-specific hemodynamic behavior. In this study, we present an integrated framework that combines Computational Fluid Dynamics (CFD) with Proper Orthogonal Decomposition (POD) and machine learning (ML) to efficiently model pulsatile blood flow using a Casson non-Newtonian fluid model, without incorporating fluid-structure interaction (FSI). Patient-specific vascular geometries were reconstructed from DICOM imaging data and simulated using ANSYS Fluent to capture key hemodynamic factors, including velocity components, pressure, wall shear stress (WSS), and oscillatory shear index (OSI).

View Article and Find Full Text PDF

Objective: Fontan surgery constructs Total Cavo-Pulmonary Connection Circulation (TCPC), but lacks power. Cavopulmonary circulation assist devices (CPAD) has been proposed to support the Fontan circulation. The virtual implantation of blood pumps into the real TCPC structure to analyze the output characteristics of blood pump and flow pattern can better guide design of the pump and the formulation of powered Fontan surgical protocols.

View Article and Find Full Text PDF