AI-powered automated model construction for patient-specific CFD simulations of aortic flows.

Sci Adv

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Image-based modeling is essential for understanding cardiovascular hemodynamics and advancing the diagnosis and treatment of cardiovascular diseases. Constructing patient-specific vascular models remains labor-intensive, error-prone, and time-consuming, limiting their clinical applications. This study introduces a deep-learning framework that automates the creation of simulation-ready vascular models from medical images. The framework integrates a segmentation module for accurate voxel-based vessel delineation with a surface deformation module that performs anatomically consistent and unsupervised surface refinements guided by medical image data. The integrated pipeline addresses key limitations of existing methods, enhancing geometric accuracy and computational efficiency. Evaluated on public datasets, it achieves state-of-the-art segmentation performance while substantially reducing manual effort and processing time. The resulting vascular models exhibit anatomically accurate and visually realistic geometries, effectively capturing both primary vessels and intricate branching patterns. In conclusion, this work advances the scalability and reliability of image-based computational modeling, facilitating broader applications in clinical and research settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412661PMC
http://dx.doi.org/10.1126/sciadv.adw2825DOI Listing

Publication Analysis

Top Keywords

vascular models
12
ai-powered automated
4
automated model
4
model construction
4
construction patient-specific
4
patient-specific cfd
4
cfd simulations
4
simulations aortic
4
aortic flows
4
flows image-based
4

Similar Publications

Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.

Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.

View Article and Find Full Text PDF

Segmentectomies Made Easy series: robotic-assisted right S1 and S2 segmentectomy.

Multimed Man Cardiothorac Surg

September 2025

Department of Thoracic Surgery, New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, UK

Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as the pioneering approach for the most complex of pulmonary resections, offering high-definition 3D visualization, enhanced instrument augmentation and tremor-free tissue articulation. Compared with open thoracotomy, the robotic platform is associated with reduced peri-operative morbidity, shorter hospital admissions and faster patient recovery. However, sublobar resections such as segmentectomies remain anatomically and technically demanding, particularly in the context of resecting multiple segments, as showcased in this right S1 and S2 segmentectomy.

View Article and Find Full Text PDF

Segmentectomies Made Easy series: robotic-assisted left S1 and S2 segmentectomy.

Multimed Man Cardiothorac Surg

September 2025

Department of Cardiothoracic Surgery, St George’s Hospital, St George's University Hospitals NHS Foundation Trust, London, UK

Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as a leading technique for undertaking the most complex pulmonary resections, providing high-definition 3D visualization, advanced instrument control and tremor-free tissue handling. Compared with open thoracotomy, the robotic platform offers reduced peri-operative complications, shorter hospital stays and faster patient recovery. Nevertheless, sublobar resections, such as segmentectomies, remain both anatomically intricate and technically challenging, particularly when resecting multiple segments, as in this left S1 and S2 segmentectomy.

View Article and Find Full Text PDF

PurposeTo summarize the currently available evidence regarding the effectiveness and safety of extracorporeal membrane oxygenation (ECMO) cannulation performed by intensivists.MethodsWe conducted a systematic search of MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials for studies of any design in which patients underwent ECMO cannulation by intensivists. The search was updated on Dec 15, 2024.

View Article and Find Full Text PDF

The effect of shape and size of embolic agents on embolization phenomena has been discussed clinically for transcatheter arterial chemoembolization (TACE). We numerically discussed the unique embolization behavior of new deformable toroidal microparticles in blood vessels by computational fluid dynamics simulations. We employed an Eulerian-Eulerian (full Eulerian) fluid-structure interaction (FSI) method to analyze the flow and deformation behaviors of a deformable torus in a cylindrical pipe.

View Article and Find Full Text PDF