Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: This study aimed to test experimental chitosan-based solutions, with modified nano-hydroxyapatite (n-HA) and Biosilicate as mineral sources with and without L-Aspartic acid (L-Asp) as the polymer-induced liquid-precursor (PILP), on mineral deposition and activity and expression of matrix metalloproteinase (MMP) on demineralized coronal bovine dentin and collagen fiber reinforcement.

Methods: Six chitosan-based experimental gel solutions were used as treatment: Sol1-2 % chitosan; Sol2-2 % chitosan+ 5.5 % n-HA; Sol3-2 % chitosan+ 0.02 % L-Asp+ 5.5 % n-HA; Sol4-2 % chitosan+ 1 % Biosilicate; Sol5-2 % chitosan+ 0.02 % L-Asp+ 1 % Biosilicate; Sol6-2 % chitosan+ 0.02 % L-Asp. Demineralized bovine dentin specimens and collagen fiber were treated for 5 min and immersed in artificial saliva for 14 days. Dentin fragments were analyzed to determine their chemical composition with Attenuated total reflectance - Fourier transform infrared spectroscopy (ART-FTIR) and to evaluate the activity and expression of two key gelatinases (MMP-2 and MMP-9) with zymography and immunofluorescence. Dentin slices were used to assess dentin density by transmitted light microscopy. Collagen fiber was tested through microtensile test. Data analysis was performed by ANOVA and Kruskal-Wallis.

Results: Samples treated with Sol1 and Sol3 showed more carbonate after demineralization; and Sol2 and Sol3 presented the highest values of collagen cross-link. The gelatinolytic activity of Sol2 and Sol3 showed statistically similar results to sound dentin (p > 0.05). Sol1, 2, and 4 resulted in a higher mineral density. Sol2, 3, and 6 showed the highest values for tensile strength.

Significance: Therefore, the treatment of demineralized dentin with modified nano-hydroxyapatite resulted in the reinforcement of collagen fiber, mineral deposition in dentin architecture, and the inhibitor of metalloproteinases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2025.08.006DOI Listing

Publication Analysis

Top Keywords

collagen fiber
16
bovine dentin
12
modified nano-hydroxyapatite
12
dentin
9
coronal bovine
8
mineral deposition
8
activity expression
8
sol2 sol3
8
highest values
8
collagen
5

Similar Publications

Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.

View Article and Find Full Text PDF

Objective: To explore the impact of Tripterygium wilfordii glycosides (TWG) on glomerulosclerosis within a rat model of chronic kidney disease (CKD), as well as the role of the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway in this mechanism.

Methods: Twenty-four clean Sprague-Dawley rats were divided into Sham group (n = 8), model group (n = 8) and TWG group (n = 8). Adriamycin nephropathy (ADRN) rat model was established by jugular vein injection of adriamycin (ADR).

View Article and Find Full Text PDF

Gel-based electronic skin (e-skin) has recently emerged as one of the most promising interfaces for human-machine interaction and wearable devices, owing to its exceptional flexibility, extensibility, transparency, biocompatibility, high-quality physiological signal monitoring, and system integration suitability. However, conventional hydrogel-based e-skins may exhibit limitations in mechanical strength and stretchability compatibility, as well as poor environmental stability. To address these challenges, following a top-down fabrication strategy, this study innovatively integrates poly(methacrylic acid), titanium sulfate, and ethylene glycol (EG) into the three-dimensional collagen fiber network structure of zeolite-tanned sheepskin to successfully develop an organogel (SMEMT) e-skin, which exhibits superior high toughness, environmental stability, high transparency (74% light transmittance at 550 nm), antibacterial properties and ecological compatibility.

View Article and Find Full Text PDF

The Atlas of the Shell Proteome in Oysters Reveals the Potential Roles of the Cytoskeleton and Extracellular Matrix in Biomineralization.

J Proteome Res

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Shell matrix proteins (SMPs) are fundamental biological macromolecules for mollusk shell formation, yet fewer than 400 SMPs in mollusks have been previously identified, hindering our understanding of how mollusks construct and maintain their shells. Here, we identified 1689 SMPs in the Pacific oyster using three different mass spectrometry techniques, representing a significant methodological advancement in shell proteomics, enabling a 6.52-fold increase in SMP identification compared to previous studies.

View Article and Find Full Text PDF

Collagen-elastin dermal scaffolds enhance tissue regeneration and reduce scarring in preclinical models.

Mater Today Bio

October 2025

Radboud University Medical Center, Research Institute for Medical Innovation, Department of Medical BioSciences, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands.

Severe scarring is an inevitable consequence of large full-thickness skin wounds, often leading to long-term complications that affect patients' well-being and necessitate extended medical interventions. While autologous split-thickness skin grafts remain the clinical standard for wound treatment, they frequently result in contractures, excessive scarring, and the need for additional corrective procedures. To address these challenges, bioengineered skin substitutes capable of promoting efficient healing while reducing complications are highly desirable.

View Article and Find Full Text PDF