98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinf.2025.106602 | DOI Listing |
BMB Rep
September 2025
Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei Uni
B cell tolerance is critical for preventing autoimmunity, yet the mechanisms by which B cells discriminate self from non-self antigens remain incompletely understood. While early findings emphasize the role of classical antigen-mediated BCR signaling strength by varying antigen formats, emerging evidence highlights the importance of mechanical cues during antigen recognition. This review explores how mechanosensitive ion channels, particularly Piezo1, contribute to B cell activation and tolerance by integrating physical forces at the immune synapse.
View Article and Find Full Text PDFAAPS J
September 2025
Precision Medicine Bioanalytical & Translational Sciences, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA.
CAR-T-cells can drive MHC class-I-mediated CD8 + cytotoxic T-cell response towards CAR constructs in addition to an antibody response. Immune response may also develop towards residuals present in the CAR-T cell product such as AAV, CRISPR/CAS9, and expamers. Health authorities recommend developing assays to assess both humoral and cellular immunogenicity towards the CAR-T protein.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Lab of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Background: Multi-epitope vaccines have become the preferred strategy for protection against infectious diseases by integrating multiple MHC-restricted T-cell and B-cell epitopes that elicit both humoral and cellular immune responses against pathogens. Computational methods address various aspects independently, yet their orchestration is technically challenging, as most bioinformatics tools are accessible through heterogeneous interfaces and lack interoperability features. The present work proposes a novel framework for rationalized multi-epitope vaccine design that streamlines end-to-end analyses through an integrated web-based environment.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China. Electronic address:
Subunit vaccines offer high biosafety but face limited immunogenicity. In this study, we utilized a biomimetic mineralization strategy, rhamnolipid-modified manganese-doped calcium phosphate nanoparticles (RMCP), to enhance the immunogenicity of subunit vaccines based on-bacterial-like particle (BLPs). Subcutaneous administration of the developed vaccine, which is prepared by encapsulating BLP vaccine with RMCP (named RMCP@COB17) enhanced significantly elevated serum IgG antibody levels in mice, induced a Th1/Th2-balanced immune response, and promoted the secretion of cytokines such as IFN-γ and IL-12.
View Article and Find Full Text PDFImmunol Res
September 2025
Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland.
We present a series of preclinical studies focused on developing in vitro 2D and 3D models for assessing immunogenic factors in preventing infectious diseases. Human peripheral blood mononuclear cells (PBMC) and Calu-3 cell lines (bronchial epithelial cells) were used to develop 2D and 3D models. Peptides: Spike-S1-His (S-His), nucleocapsid-His and adjuvants: human adenovirus five serotype-based viral vector (AdV-D24-ICOSL-CD40L), armed with inducible co-stimulator (ICOSL) and CD40 ligand (CD40L), and a vector lacking these transgenes (AdV5/3) were used due to their effective initial interaction with antigen-presenting cells (APC).
View Article and Find Full Text PDF