98%
921
2 minutes
20
CAR-T-cells can drive MHC class-I-mediated CD8 + cytotoxic T-cell response towards CAR constructs in addition to an antibody response. Immune response may also develop towards residuals present in the CAR-T cell product such as AAV, CRISPR/CAS9, and expamers. Health authorities recommend developing assays to assess both humoral and cellular immunogenicity towards the CAR-T protein. For the assessment of a humoral response, scientists can leverage the guidance and experience from anti-drug antibody (ADA) assays being developed for biologics. However, measuring CAR-T induced cellular immune responses may be challenging due to factors like cell survival, assay variability, lack of relevant positive controls, reagents, etc. This commentary overviews the strategy for investigating cellular immunogenicity for CAR-T products in development, describing the process for risk assessment, guidance on sample collection, including logistics of cell processing and handling, and design of CAR domain related peptides to elicit the memory response from dosed subjects. The experience gained from cellular immunogenicity assessments implemented for ongoing CAR-T-cell therapies and challenges encountered are presented with concrete recommendations, without disclosure of proprietary data. The clinical relevance/impact of assessing cellular immunogenicity for CAR-T therapies and any association with humoral response will also be delineated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12248-025-01129-3 | DOI Listing |
Macromol Biosci
September 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.
View Article and Find Full Text PDFBiomacromolecules
September 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
Triple-negative breast cancer (TNBC) remains a formidable clinical challenge due to its aggressive behavior, lack of therapeutic targets, and poor prognosis. The PI3K/AKT/mTOR pathway is highly activated in TNBC, making it a promising therapeutic target. Conventional PEGylated nanocarriers often face challenges, such as accelerated blood clearance and lysosomal trapping.
View Article and Find Full Text PDFCytometry B Clin Cytom
September 2025
Department of Hematopathology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, Ch
Two types of plasmacytoid dendritic cell (pDC) proliferation disease are acknowledged so far by the 5th edition of the World Health Organization Classification of Haematolymphoid Tumors: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) and mature pDC proliferation associated with myeloid neoplasms (MPDCP) in which pDC is part of the malignant clone. We aim to investigate pDC proliferation associated with non-myeloid acute leukemia (AL). A retrospective analysis of all cases admitted in our center with a diagnosis of non-myeloid AL from September 2020 to April 2023 was performed to select cases with pDCs greater than 2% of bone marrow by flow cytometry (FCM).
View Article and Find Full Text PDFJ Extracell Vesicles
September 2025
IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Toulouse, France.
Outer membrane vesicles (OMVs) are nanosized vesicles naturally secreted by Gram-negative bacteria and represent a promising platform for vaccine development. OMVs possess inherent immunostimulatory properties due to the presence of pathogen-associated molecular patterns (PAMPs), providing self-adjuvanting capabilities and the ability to elicit both innate and adaptive immune responses. This review outlines the advantages of OMVs over traditional vaccine strategies, including their safety, modularity, and the potential for genetic engineering to enable targeted antigen delivery.
View Article and Find Full Text PDFmBio
September 2025
Corner Therapeutics, Watertown, Massachusetts, USA.
Unlabelled: Dendritic cells (DCs) are the primary inducers of immunity induced by infection or vaccination. To stimulate durable T cell-mediated immunity, multiple DC activities are required. DCs must present antigen, express costimulatory molecules, and secrete inflammatory cytokines to direct T cell activation.
View Article and Find Full Text PDF