Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Colchicine is commonly prescribed for inflammation and gout, but its nephrotoxicity and underlying mechanisms remain incompletely understood. The objective of this research was to clarify the association between m6A methylation modifications and nephrotoxicity caused by colchicine. A significant decrease in HK2 cell viability was observed following colchicine treatment, and mRNA sequencing (mRNA-seq) revealed the differential expression of genes associated with DNA damage and autophagy. Further methylated RNA immunoprecipitation sequencing (MeRIP-seq) analysis revealed an association between N6-methyladenosine (m6A) modifications and the expression of genes involved in DNA damage and autophagy after colchicine exposure. Molecular docking and a molecular dynamics (MD) analysis identified ZC3H13 as a potential regulator of colchicine-induced cytotoxicity in HK2. Experimental validation confirmed that colchicine induces DNA damage and autophagy in HK2 cells, with ZC3H13 playing a significant role in these processes. In conclusion, the findings suggested that colchicine-induced damage in HK2 cells is associated with changes in m6A methylation levels in target genes and the altered expression of m6A regulator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390427PMC
http://dx.doi.org/10.3390/toxins17080408DOI Listing

Publication Analysis

Top Keywords

dna damage
16
damage autophagy
16
hk2 cells
12
autophagy hk2
8
m6a methylation
8
expression genes
8
m6a
5
damage
5
hk2
5
colchicine
5

Similar Publications

Ultra-high field strength electroporation enables efficient DNA transformation and genome editing in nontuberculous mycobacteria.

Microbiol Spectr

September 2025

Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.

Efficient DNA delivery is essential for genetic manipulation of mycobacteria and for dissecting their physiology, pathogenesis, and drug resistance. Although electroporation enables transformation efficiencies exceeding 10⁵ CFU per µg DNA in and , it remains highly inefficient in many nontuberculous mycobacteria (NTM), including . Here, we discovered that NTM such as exhibit exceptional tolerance to ultra-high electric field strengths and that hypertonic preconditioning partially protects cells from electroporation-induced damage.

View Article and Find Full Text PDF

The mycotoxin, aflatoxin B (AFB), is a potent mutagen that contaminates agricultural food supplies. After ingestion, AFB is oxidized into a reactive electrophile that alkylates DNA, forming bulky lesions such as the genotoxic formamidopyrimidine lesion, AFB-Fapy dG. This lesion is mainly repaired by nucleotide excision repair (NER) in bacteria; however, in humans the picture is less clear.

View Article and Find Full Text PDF

Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.

View Article and Find Full Text PDF

Introduction: Age-related macular degeneration (AMD) is a leading cause of vision loss in older adults, with limited effective treatments available. This study aimed to investigate the pharmacological effects of dihydromyricetin (DHM) on AMD and to identify its putative pharmacological targets through network analysis and molecular docking approaches.

Methods: experiments established an AMD model using sodium iodate (SI)-induced ARPE-19 cells, with CCK-8 assays determining 15 mM SI as the optimal modeling concentration and 100 μM DHM as the optimal treatment concentration.

View Article and Find Full Text PDF

Objectives: The Sorbin and SH3 domain containing 1 (SORBS1), a protein linked to insulin signaling CBL interaction, was investigated for its role in pancreatic cancer apoptosis. This study explored polyphyllin H (PPH)'s ability to restore SORBS1-knockdown-mediated repair functions.

Methods: PANC-1 cells were divided into Blank, overexpression (OE), and knockdown groups.

View Article and Find Full Text PDF