98%
921
2 minutes
20
Colchicine is commonly prescribed for inflammation and gout, but its nephrotoxicity and underlying mechanisms remain incompletely understood. The objective of this research was to clarify the association between m6A methylation modifications and nephrotoxicity caused by colchicine. A significant decrease in HK2 cell viability was observed following colchicine treatment, and mRNA sequencing (mRNA-seq) revealed the differential expression of genes associated with DNA damage and autophagy. Further methylated RNA immunoprecipitation sequencing (MeRIP-seq) analysis revealed an association between N6-methyladenosine (m6A) modifications and the expression of genes involved in DNA damage and autophagy after colchicine exposure. Molecular docking and a molecular dynamics (MD) analysis identified ZC3H13 as a potential regulator of colchicine-induced cytotoxicity in HK2. Experimental validation confirmed that colchicine induces DNA damage and autophagy in HK2 cells, with ZC3H13 playing a significant role in these processes. In conclusion, the findings suggested that colchicine-induced damage in HK2 cells is associated with changes in m6A methylation levels in target genes and the altered expression of m6A regulator.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390427 | PMC |
http://dx.doi.org/10.3390/toxins17080408 | DOI Listing |
Microbiol Spectr
September 2025
Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
Efficient DNA delivery is essential for genetic manipulation of mycobacteria and for dissecting their physiology, pathogenesis, and drug resistance. Although electroporation enables transformation efficiencies exceeding 10⁵ CFU per µg DNA in and , it remains highly inefficient in many nontuberculous mycobacteria (NTM), including . Here, we discovered that NTM such as exhibit exceptional tolerance to ultra-high electric field strengths and that hypertonic preconditioning partially protects cells from electroporation-induced damage.
View Article and Find Full Text PDFNAR Cancer
September 2025
Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States.
The mycotoxin, aflatoxin B (AFB), is a potent mutagen that contaminates agricultural food supplies. After ingestion, AFB is oxidized into a reactive electrophile that alkylates DNA, forming bulky lesions such as the genotoxic formamidopyrimidine lesion, AFB-Fapy dG. This lesion is mainly repaired by nucleotide excision repair (NER) in bacteria; however, in humans the picture is less clear.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, Republic of Korea.
Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.
View Article and Find Full Text PDFFront Pharmacol
August 2025
College of Pharmacy, Binzhou Medical University, Binzhou, Shandong, China.
Introduction: Age-related macular degeneration (AMD) is a leading cause of vision loss in older adults, with limited effective treatments available. This study aimed to investigate the pharmacological effects of dihydromyricetin (DHM) on AMD and to identify its putative pharmacological targets through network analysis and molecular docking approaches.
Methods: experiments established an AMD model using sodium iodate (SI)-induced ARPE-19 cells, with CCK-8 assays determining 15 mM SI as the optimal modeling concentration and 100 μM DHM as the optimal treatment concentration.
Oncol Res
September 2025
Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China.
Objectives: The Sorbin and SH3 domain containing 1 (SORBS1), a protein linked to insulin signaling CBL interaction, was investigated for its role in pancreatic cancer apoptosis. This study explored polyphyllin H (PPH)'s ability to restore SORBS1-knockdown-mediated repair functions.
Methods: PANC-1 cells were divided into Blank, overexpression (OE), and knockdown groups.