98%
921
2 minutes
20
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence (AI) offers considerable potential to enhance biomonitoring efforts through advanced data modelling, yet its application to pollutant dynamics in complex biological matrices such as human milk remains underutilized. This study applied an AI-based framework, integrating machine learning, metaheuristic hyperparameter optimization, explainable AI, and postprocessing, to analyze PCB-170 levels in breast milk samples from 186 mothers in Zadar, Croatia. Among 24 analyzed POPs, the most influential predictors of PCB-170 concentrations were hexa- and hepta-chlorinated PCBs (PCB-180, -153, and -138), alongside ,-DDE. Maternal age and other POPs exhibited negligible global influence. SHAP-based interaction analysis revealed pronounced co-behavior among highly chlorinated congeners, especially PCB-138-PCB-153, PCB-138-PCB-180, and PCB-180-PCB-153. These findings highlight the importance of examining pollutant interactions rather than individual contributions alone. They also advocate for the revision of current monitoring strategies to prioritize multi-pollutant assessment and focus on toxicologically relevant PCB groups, improving risk evaluation in real-world exposure scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390066 | PMC |
http://dx.doi.org/10.3390/toxics13080631 | DOI Listing |
Med Eng Phys
October 2025
Biomedical Device Technology, Istanbul Aydın University, Istanbul, 34093, Istanbul, Turkey. Electronic address:
Deep learning approaches have improved disease diagnosis efficiency. However, AI-based decision systems lack sufficient transparency and interpretability. This study aims to enhance the explainability and training performance of deep learning models using explainable artificial intelligence (XAI) techniques for brain tumor detection.
View Article and Find Full Text PDFDtsch Med Wochenschr
September 2025
Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Universitätsmedizin Berlin, Berlin, Deutschland.
Since 2022, an estimated 150000 to 200000 patients with heart failure (HF) in Germany have met the inclusion criteria for HF telemonitoring in accordance with the Federal Joint Committee's (G-BA) decision. Currently, only a few artificial intelligence (AI) applications are used in standard cardiovascular telemedicine care. However, AI applications could improve the predictive accuracy of existing telemedical sensor technology by recognising patterns across multiple data sources.
View Article and Find Full Text PDFIEEE Trans Comput Biol Bioinform
September 2025
Artificial intelligence (AI) based anticancer drug recommendation systems have emerged as powerful tools for precision dosing. Although existing methods have advanced in terms of predictive accuracy, they encounter three significant obstacles, including the "black-box" problem resulting in unexplainable reasoning, the computational difficulty for graphbased structures, and the combinatorial explosion during multistep reasoning. To tackle these issues, we introduce a novel Macro-Micro agent Drug sensitivity inference (MarMirDrug).
View Article and Find Full Text PDFBrief Bioinform
August 2025
Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, China.
Accurate tumor mutation burden (TMB) quantification is critical for immunotherapy stratification, yet remains challenging due to variability across sequencing platforms, tumor heterogeneity, and variant calling pipelines. Here, we introduce TMBquant, an explainable AI-powered caller designed to optimize TMB estimation through dynamic feature selection, ensemble learning, and automated strategy adaptation. Built upon the H2O AutoML framework, TMBquant integrates variant features, minimizes classification errors, and enhances both accuracy and stability across diverse datasets.
View Article and Find Full Text PDFNurse Educ Pract
August 2025
Department of Nursing, Mokpo National University, Muan-gun, Jeollanam-do, Republic of Korea. Electronic address:
Aim: This study aims to develop and validate an instructional debriefing model that combines question-centered learning methodology with AI prompt engineering techniques for nursing simulations.
Background: Integrating artificial intelligence (AI)-based prompt engineering into nursing simulation offers structured strategies to enhance clinical reasoning. However, current debriefing models insufficiently incorporate AI methodologies such as question-centered learning and prompt engineering, indicating a lack of theoretical and procedural frameworks METHODS: The model was developed using a four-phase approach: (1) literature review, (2) instructor interviews, (3) expert validation and (4) external evaluation of effectiveness.