98%
921
2 minutes
20
Biochar, a porous carbonaceous material derived from the pyrolysis of biomass under oxygen-limited conditions, offers several advantages for environmental remediation, including a high specific surface area, ease of preparation, and abundant raw material sources. However, the application of pristine biochar is limited by its inherent physicochemical shortcomings, such as a lack of active functional groups and limited elemental compositions. To overcome these limitations, metal-modified biochars have garnered increasing attention. In particular, iron-manganese (Fe-Mn) modification significantly enhances the adsorption capacity, redox potential, and microbial activity of biochar, owing to the synergistic interactions between Fe and Mn. Iron-manganese-modified biochar (FM-BC) has demonstrated effective removal of heavy metals, organic matter, phosphate, and nitrate through mechanisms including mesoporous adsorption, redox reactions, complexation, electrostatic interactions, and precipitation. Moreover, FM-BC can improve soil physicochemical properties and support plant growth, highlighting its promising potential for broader environmental application. This review summarizes the preparation methods, environmental remediation mechanisms, and practical applications of FM-BC and discusses future directions in mechanism elucidation, biomass selection, and engineering implementation. Overall, FM-BC, with its tunable properties and multifunctional capabilities, emerges as a promising and efficient material for addressing complex environmental pollution challenges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390543 | PMC |
http://dx.doi.org/10.3390/toxics13080618 | DOI Listing |
Beilstein J Nanotechnol
August 2025
Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.
This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.
View Article and Find Full Text PDFJ Appl Toxicol
September 2025
Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Metal oxide nanoparticles are employed in various applications such as medicine, environmental remediation, molecular sensing, and drug delivery. However, large-scale commercial production and the use of smaller-sized nanoparticles increase the potential risk of toxicity to humans. Therefore, there is an urgent need to investigate the toxicity of nanomaterials.
View Article and Find Full Text PDFEnviron Int
September 2025
State Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sciences, Northeastern University, Shenyang 110004, China; School of Environment, Hangzhou Institute for Advanced Study, Univ
Exposure to nanoplastics (NPs), a pervasive environmental pollutant, presents potential health risks. Pulmonary exposure to NPs has been shown to disrupt both pulmonary metabolic status and immune homeostasis, leading to concerns about their impact on respiratory health and systemic well-being. However, the underlying linkage and mechanisms remain elusive.
View Article and Find Full Text PDFMicrob Cell Fact
September 2025
Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31257, Egypt.
Background And Aim: Synthetic dyes in the textile industry pose risks to human health and environmental safety. The current study aims to examine the efficacy of a novel esterase derived from an endophyte fungus in decolorizing diverse dyes, focusing on its production, purification, optimization, and characterization.
Results: Trichoderma afroharzianum AUMC16433, a novel fungal endophyte with esterase-producing ability, was first detected from the cladodes of Opuntia ficus indica by ITS-rRNA sequencing.
Environ Monit Assess
September 2025
School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.
View Article and Find Full Text PDF