Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Insulin resistance (IR), a core component in the development of type 2 diabetes mellitus (T2DM), is increasingly recognized for its role in cardiovascular and pulmonary complications. This review explores the relationship between IR, right ventricular dysfunction (RVD), and decreased lung volume in patients with T2DM. Emerging evidence suggests that IR contributes to early structural and functional alterations in the right ventricle, independent of overt cardiovascular disease. The mechanisms involved include oxidative stress, inflammation, dyslipidemia, and obesity-factors commonly found in metabolic syndrome and T2DM. These pathophysiological changes compromise right ventricular contractility, leading to reduced pulmonary perfusion and respiratory capacity. RVD has been associated with chronic lung disease, pulmonary hypertension, and obstructive sleep apnea, all of which are prevalent in the diabetic population. As RVD progresses, it can result in impaired gas exchange, interstitial pulmonary edema, and exercise intolerance-highlighting the importance of early recognition and management. Therapeutic strategies should aim to improve insulin sensitivity and cardiac function through lifestyle interventions, pharmacological agents such as SGLT2 inhibitors and GLP-1/GIP analogs, and routine cardiac monitoring. These approaches may help slow the progression of RVD and its respiratory consequences. Considering the global burden of diabetes and obesity, and the growing incidence of related complications, further research is warranted to clarify the mechanisms linking IR, RVD, and respiratory dysfunction. Understanding this triad will be crucial for developing targeted interventions that improve outcomes and quality of life in affected patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387402PMC
http://dx.doi.org/10.3390/jpm15080336DOI Listing

Publication Analysis

Top Keywords

insulin resistance
8
lung volume
8
ventricular dysfunction
8
rvd respiratory
8
rvd
5
impact insulin
4
resistance lung
4
volume ventricular
4
dysfunction diabetic
4
diabetic patients-literature
4

Similar Publications

Background: The CRP-albumin-lymphocyte (CALLY) index has potential clinical value as a novel marker integrating inflammatory, nutritional and immune status in the development of colorectal polyps. This study examined whether gender factors influence the association between CALLY and colorectal polyps; in addition to elucidating whether metabolic pathways mediate this relationship.

Methods: This is a cross-sectional study including 5409 adult health screening participants who completed colonoscopy.

View Article and Find Full Text PDF

Insulin resistance is a heritable risk factor for many chronic diseases; however, the genetic drivers remain elusive. In seeking these, we performed genetic mapping of insulin sensitivity in 670 chow-fed Diversity Outbred in Australia (DOz) mice and identified a genome-wide significant locus (QTL) on chromosome 8 encompassing 17 defensin genes. By taking a systems genetics approach, we identified alpha-defensin 26 (Defa26) as the causal gene in this region.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is associated with metabolic disorders such as insulin resistance and liver fat accumulation. However, the specific mediating role of liver-related metabolic indicators in this association has not been fully studied. The purpose of this study was to investigate the relationship between Metabolic Score for Insulin Resistance (METS-IR) and OSA, focusing on the mediating effects of liver fat percentage (PLF) and hepatic steatosis index (HSI).

View Article and Find Full Text PDF

Aims And Background: Relative fat mass (RFM) is strongly associated with type 2 diabetes (T2DM) and has been shown to be a better predictor than body mass index (BMI) and waist circumference (WC). This study aims to investigate the association between RFM and incident T2DM among adults in the Tehran Lipid and Glucose Study cohort.

Methods: Data from 8419 participants (4716 women; mean age, 40.

View Article and Find Full Text PDF

White kidney bean extract improves letrozole-induced polycystic ovary syndrome in rats by regulating the Wnt signaling pathway.

J Steroid Biochem Mol Biol

September 2025

Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Xishan District, Kunming City, Yunnan Province, 650000, China. Electronic address:

Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder characterized by ovarian dysfunction, with limited effective treatments. This study investigates the therapeutic effects and mechanisms of white kidney bean extract (WKBE) in a PCOS rat model. A PCOS model was established using letrozole, followed by intervention with varying doses of WKBE.

View Article and Find Full Text PDF