98%
921
2 minutes
20
Biomimetic design, derived from the study of biological systems, has emerged as a pivotal methodology in contemporary art and design. By systematically integrating the morphological traits, structural principles, and functional mechanisms of living organisms into design thinking, it provides both a novel theoretical perspective and methodological support for modern design practice. This design philosophy draws abundant inspiration from nature's aesthetics and achieves a profound fusion of organic form and artistic expression. This study systematically traces the theoretical evolution of biomimetic design-from its early phase of direct form-mimicry to today's holistic, systems-based approach-and clarifies its interdisciplinary logic and developmental trajectory. We examine its applications in public installations, product development, architecture, and fashion. Through a structured analysis of plant-inspired, animal-inspired, and ecosystem-inspired strategies-linked with the aesthetic demands and cultural contexts of design-this study uncovers the underlying mechanisms by which biological models drive innovation. The findings demonstrate that, by organically combining form simulation, function optimization, and ecological awareness, biomimetic design not only elevates the aesthetic value, visual impact, and emotional resonance of design works but also amplifies their social role and cultural significance. Moreover, its interdisciplinary potential in materials innovation, technological integration, and environmental sustainability highlights unique pathways for addressing complex contemporary challenges. This study adopts a methodology that blends case-study analysis and theoretical interpretation. Through an in-depth examination of exemplar projects, it validates that biomimetic design not only achieves a seamless unity of function and form but also offers a robust theoretical framework and practical strategies for sustainable design implementation. These insights advance both the theoretical depth and practical innovation of the design discipline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383767 | PMC |
http://dx.doi.org/10.3390/biomimetics10080541 | DOI Listing |
Sci Adv
September 2025
Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.
Bioinspired network designs are widely exploited in biointegrated electronics and tissue engineering because of their high stretchability, imperfection insensitivity, high permeability, and biomimetic J-shaped stress-strain responses. However, the fabrication of three-dimensionally (3D) architected electronic devices with ordered constructions of network microstructures remains challenging. Here, we introduce the tensile buckling of stacked multilayer precursors as a unique route to 3D network materials with regularly distributed 3D microstructures.
View Article and Find Full Text PDFSmall
September 2025
College of Science, Nanjing Forestry University, Nanjing, 210037, China.
Inspired by the rigid exoskeleton and elastic inner tissues of crustaceans, a bilayer gel integrating high-strength rigidity and soft cushioning with high interfacial adhesion (1060 ± 40 J m ) is developed via a stepwise solid-liquid phase crosslinking strategy. Herein, a prefrozen high-concentration polyvinyl alcohol (PVA) solution forms a solid-state structural framework, while a subsequently cast low-concentration PVA solution generates a flexible layer. Partial thawing of the frozen gel during casting triggers molecular chain interpenetration at the interface, synergistically enhanced by controlled molecular penetration, freeze-thaw cycles, and salt-induced crystallization.
View Article and Find Full Text PDFRegen Biomater
August 2025
Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China.
Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
Motivated by copper's essential role in biology and its wide range of applications in catalytic and synthetic chemistry, this work aims to understand the effect of heteroatom substitution on the overall stability and reactivity of biomimetic Cu(II)-alkylperoxo complexes. In particular, we designed a series of tetracoordinated ligand frameworks based on iso-BPMEN = (,-bis(2-pyridylmethyl)-','-dimethylethane-1,2-diamine) with varying the primary coordination sphere using different donor atoms (N, O, or S) bound to Cu(II). The copper(II) complexes bearing iso-BPMEN and their modified heteroatom-substituted ligands were synthesized and structurally characterized.
View Article and Find Full Text PDF