98%
921
2 minutes
20
As modern medical technology advances, the utilization of gene expression data has proliferated across diverse domains, particularly in cancer diagnosis and prognosis monitoring. However, gene expression data is often characterized by high dimensionality and a prevalence of redundant and noisy information, prompting the need for effective strategies to mitigate issues like the curse of dimensionality and overfitting. This study introduces a novel hybrid ensemble equilibrium optimizer gene selection algorithm in response. In the first stage, a hybrid approach, combining multiple filters and gene correlation-based methods, is used to select an optimal subset of genes, which is achieved by evaluating the redundancy and complementary relationships among genes to obtain a subset with maximal information content. In the second stage, an equilibrium optimizer algorithm incorporating Gaussian Barebone and a novel gene pruning strategy is employed to further search for the optimal gene subset within the candidate gene space selected in the first stage. To demonstrate the superiority of the proposed method, it was compared with nine feature selection techniques on 15 datasets. The results indicate that the ensemble filtering method in the first stage exhibits strong stability and effectively reduces the search space of the gene selection algorithms. The improved equilibrium optimizer algorithm enhances the prediction accuracy while significantly reducing the number of selected features. These findings highlight the effectiveness of the proposed method as a valuable approach for gene selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383375 | PMC |
http://dx.doi.org/10.3390/biomimetics10080523 | DOI Listing |
Anal Sens
January 2025
Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 United States.
At present, two competing hyperpolarization (HP) techniques, dissolution dynamic nuclear polarization (DNP) and parahydrogen (para-H) induced polarization (PHIP), can generate sufficiently high liquid state C signal enhancement for in vivo studies. PHIP utilizes the singlet spin state of para-H to create non-equilibrium spin populations. In hydrogenative PHIP, para-H is irreversibly added to unsaturated precursors, typically in the presence of a homogeneous catalyst.
View Article and Find Full Text PDFSci Total Environ
September 2025
Laboratoire Physico-Chimie des Matériaux, Substances Naturelles et Environnement, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier, Morocco.
Escalating concentrations of norfloxacin (NFX) in surface and wastewaters demand sustainable remediation strategies. In this study, dual-functional hydrochars were synthesized from argan nut shells (ArNS) via hydrothermal carbonization (HTC), with process conditions optimized by varying temperature (150-200 °C) and residence time (2-6 h). Among the materials, H1:5@150-4-prepared at 150 °C for 4 h with a biomass-to-water ratio of 1:5-exhibited the best performance, achieving a monolayer NFX adsorption capacity of 27.
View Article and Find Full Text PDFFood Chem
August 2025
Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India. Electronic address:
Optimal proportions of plasticizers, crosslinkers, and hydrophobicity modifiers are essential for biopolymer film formulations. In this study, Cellulose acetate bioplastic films were prepared with varying concentrations of polyethylene glycol (PEG), malic acid (MA), and hexadecanoic acid (HAD). The resulting films were characterized for thickness (TH), water absorbency (WA), transparency (TP), and equilibrium moisture content (MC).
View Article and Find Full Text PDFACS Synth Biol
September 2025
Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 050-29, South Korea.
We report the development of a cofactor-free CO fixation platform based on a three-enzyme cascade comprising ferulic acid decarboxylase (AnFDC), phenylalanine ammonia-lyase (AvPAL), and l-amino acid deaminase (PmLAAD). Unlike canonical ATP- or NADPH-dependent CO assimilation pathways, this system uses a prFMN-dependent carboxylation mechanism, enabling efficient CO incorporation under ambient conditions without energy-intensive cofactors. Systematic screening identified AnFDC as the optimal decarboxylase for styrene carboxylation, while AvPAL and PmLAAD were selected for their superior catalytic efficiencies in the cascade.
View Article and Find Full Text PDFRisk Anal
September 2025
School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh, UK.
Megacities' inherent complexity and dense populations heighten vulnerability to health crises, necessitating pandemic resilience research. This study pioneers a tailored resilience assessment framework for pandemic-facing megacities, building upon a refined Tyler and Moench urban resilience model. Applying grey correlation-technique for order preference by similarity to ideal solution (TOPSIS) methodology and barrier diagnosis modeling, we evaluated eight Chinese megacities.
View Article and Find Full Text PDF