Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bionic synthesis technology has made significant breakthroughs in porous functional materials by replicating and optimizing biological structures. For instance, biomimetic titanium dioxide-coated carbon multilayer materials, prepared via biological templating, exhibit a hierarchical structure, abundant nanopores, and synergistic effects. Bionic mineralization further enhances microcapsules by forming a secondary inorganic wall, granting them superior impermeability, high elastic modulus, and hardness. Through techniques like molecular self-assembly, electrospinning, and pressure-driven fusion, researchers have successfully fabricated centimeter-scale artificial lamellar bones without synthetic polymers. In environmental applications, electrospun membranes inspired by lotus leaves and bird bones achieve 99.94% separation efficiency for n-hexane-water mixtures, retaining nearly 99% efficiency after 20 cycles. For energy applications, an all-ceramic silica nanofiber aerogel with a bionic blind bristle structure demonstrates ultralow thermal conductivity (0.0232-0.0643 W·m·K) across a broad temperature range (-50 to 800 °C). This review highlights the preparation methods and recent advances in biomimetic porous materials for practical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383789PMC
http://dx.doi.org/10.3390/biomimetics10080521DOI Listing

Publication Analysis

Top Keywords

advances biomimetic
8
biomimetic porous
8
porous materials
8
materials
4
materials real-world
4
applications
4
real-world applications
4
applications bionic
4
bionic synthesis
4
synthesis technology
4

Similar Publications

Flying seed-inspired sensors for remote environmental monitoring on Earth and beyond.

Trends Biotechnol

September 2025

Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 77900, Olomouc, Czech Republic; Nanotechnology Centre, Centre for Energy and Environmental Technologies, Technical University of Ostrava (VSB), 17 Listopadu 2172/15, 70800 Ostrava, Poruba, Czech

Exploring mobility beyond traditional robotic systems such as walking, swimming, and jumping, flight through dispersal, gliding, or hovering remains an untapped frontier for advanced stimulus-responsive and -sensing materials. Nature-inspired engineering has been a foundational aspect of robotic innovations, and biohybrid and biomimetic flying seeds are now becoming a significant example of this concept. By mimicking the aerodynamic properties and dispersal mechanisms of natural seeds, semi- and fully artificial systems are being designed for environmental monitoring, precision agriculture, and disease management applications that require wide-area coverage.

View Article and Find Full Text PDF

A review of biomimetic hydrogel wound dressings: Design inspiration, construction strategies, multifunctionality and applications.

Int J Biol Macromol

September 2025

Marine College, Shandong University, Weihai, 264209, China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 265599, China. Electronic address:

The treatment of chronic hard-to-heal wounds has become a major medical and public health problem worldwide. The search for novel and efficient wound healing dressings is crucial because of the complex mechanisms of wound genesis and of the inability to spontaneously repair. Many inherent properties of organisms in nature and their intrinsic molecular mechanisms have inspired researchers to design biomimetic hydrogel wound dressings to treat chronic hard-to-heal wounds.

View Article and Find Full Text PDF

Catalysts for heterogeneous advanced oxidation processes (AOPs) in water remediation face environmental sustainability challenges, due to the intensive production of catalysts and limited stability of catalysts while maintaining high efficiency. Herein, we design a biomimetic carbon catalyst (BCC) inspired by the diatom frustule valve structure, achieving high environmental sustainability while maintaining superior water decontamination performance by a non-radical direct electron transfer (DET) pathway through activating peracetic acid (PAA). Utilizing a hydrogen-bonding strategy, BCC features pillared layered hierarchical pores with an ultrahigh specific surface area of 2710.

View Article and Find Full Text PDF

Abnormal levels of trypsin in the human body can lead to various diseases, yet conventional detection methods often lack operational simplicity and real-time readout capabilities. This work presents a state-of-the-art metal organic framework (MOF) nanozyme-integrated liquid crystal (LC) sensor (MHN-LC sensor) and demonstrates the detection of trypsin as a proof of the concept. By rational engineering of the MOF-808 framework with Al and l-histidine coordination, a novel MOF nanozyme (MHis-NE) exhibiting exceptional acetylcholinesterase (AChE)-mimetic activity is successfully prepared.

View Article and Find Full Text PDF

Nanomedicine Reimagined: Translational Strategies for Precision Tumor Theranostics.

Adv Mater

September 2025

Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.

Nanomedicine has shown remarkable promise in advancing tumor imaging and therapy through its ability to achieve targeted delivery, precision imaging, and therapeutic efficacy. However, translating these preclinical successes into clinical practice remains fraught with challenges, including inconsistent tumor targeting, off-target organ accumulation, and a lack of comprehensive understanding of in vivo behavior of nanomedicines. In this perspective, the current state of nanomedicine research is critically analyzed, emphasizing the translational bottlenecks and offering a forward-looking view on potential solutions.

View Article and Find Full Text PDF