98%
921
2 minutes
20
Exploring mobility beyond traditional robotic systems such as walking, swimming, and jumping, flight through dispersal, gliding, or hovering remains an untapped frontier for advanced stimulus-responsive and -sensing materials. Nature-inspired engineering has been a foundational aspect of robotic innovations, and biohybrid and biomimetic flying seeds are now becoming a significant example of this concept. By mimicking the aerodynamic properties and dispersal mechanisms of natural seeds, semi- and fully artificial systems are being designed for environmental monitoring, precision agriculture, and disease management applications that require wide-area coverage. Scientists are biomimicking these structures to explore the Martian surface and subsurface. This opinion article highlights the potential of flying seed-inspired sensors to advance environmental monitoring on Earth and planets such as Mars and beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tibtech.2025.08.005 | DOI Listing |
Anal Methods
September 2025
Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
This study introduces a new, highly sensitive, and reliable method for detecting and measuring orthophosphate in environmental water samples. This method combines cetyltrimethylammonium bromide (CTAB)-mediated coacervation extraction with digital image-based colorimetry, providing a robust and efficient approach for orthophosphate analysis. In this system, CTAB, a cationic surfactant, serves a dual role as both an ion-pairing agent and an extraction medium.
View Article and Find Full Text PDFJ Orthop Res
September 2025
Department of Kinesiology, College of Health Sciences, University of Rhode Island, Kingston, Rhode Island, USA.
Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou, 213000, People's Republic of China.
A multi-indicator framework was developed to resolve multi-source pollution in highly urbanized rivers, demonstrated in the Qinhuai River Basin, Nanjing, China. Water quality index (WQI) stratification was integrated with dissolved organic matter (DOM) fluorescence components, hydrochemical ions, and conventional parameters and analyzed using positive matrix factorization (PMF). Correlation analysis further elucidated source compositions and interactions.
View Article and Find Full Text PDFOecologia
September 2025
Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL, 36849, USA.
Understanding changes to local communities brought about by biological invasions is important for conserving biodiversity and maintaining environmental stability. Scale insects (Hemiptera: Coccoidea) are a diverse group of insects well known for their invasion potential and ability to modify local abundance of multiple insect groups. Here, we tested how the presence of crape myrtle bark scale (Acanthococcus lagerstroemiae, CMBS), an invasive felt scale species, seasonally impacted local insect abundance, biodiversity, and community structure on crape myrtle trees.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.
View Article and Find Full Text PDF