Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The lack of an effective gene editing technology system for Fraxinus mandshurica makes it challenging to improve its traits through genetic engineering methods. In this study, an effective CRISPR/Cas9 gene editing system targeting plant growth points was established through the optimization of Agrobacterium tumefaciens concentration and infection duration. Furthermore, a tissue culture system for clustered buds was developed by supplementing the media with hormones at different concentrations. FmbHLH1-edited chimeric plants were successfully generated using the developed CRISPR/Cas9 gene editing system. Homozygous plants were induced and screened using the developed clustered bud system. Among 100 randomly transformed growing points, 18% of the induced clustered buds were gene-edited, which confirmed that the established CRISPR/Cas9 gene editing system was effective. Phenotypic analysis and evaluation of drought tolerance-related physiological indicators in FmbHLH1 knockout and wild-type lines revealed that FmbHLH1 positively regulated the drought tolerance of F. mandshurica by adjusting its ability to scavenge reactive oxygen species and to regulate osmotic potential. In summary, we developed an effective CRISPR/Cas9 gene editing system for F. mandshurica, providing an effective method for the molecular breeding of F. mandshurica.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379479PMC
http://dx.doi.org/10.1186/s12870-025-07094-5DOI Listing

Publication Analysis

Top Keywords

gene editing
24
crispr/cas9 gene
20
editing system
20
system
8
growth points
8
fraxinus mandshurica
8
effective crispr/cas9
8
clustered buds
8
gene
6
editing
6

Similar Publications

Unravelling the novel mode of action of the spinosyn insecticides: A 25 year review.

Pestic Biochem Physiol

November 2025

Corteva Agriscience, Indianapolis, IN 46268, USA; Retired - Present address Agrilucent LLC, Morro Bay, CA 93442, USA.

Since their registration more than 25 years ago, the spinosyns have become a significant insect management tool in farmers' battles to protect crop quality and yield. Spinosad (Qalcova™ active) and spinetoram (Jemvelva™ active), the two members of the Insecticide Resistance Action Committee (IRAC) Group 5 nicotinic acetylcholine receptor (nAChR) allosteric modulators Site I, class of insecticides, have proven highly effective at controlling chewing insect pests on over 250 different crops. Their importance as an integral rotation partner in insect pest management programs has stimulated a large body of research into their mode of action (MoA) and mechanisms of resistance.

View Article and Find Full Text PDF

The cytoplasmic N- and C-termini are dispensable for SLAH3 to mediate nitrate-dependent ammonium detoxification in Arabidopsis.

Biochem Biophys Res Commun

August 2025

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China. Electronic address: xiaochb@lz

Ammonium (NH) toxicity significantly limits nitrogen use efficiency (NUE) in agriculture. Nitrate (NO) supplementation mitigates this toxicity, with the anion channel SLAH3 playing a central role by mediating NO efflux to counteract NH-induced rhizosphere acidification. SLAH3, a plasma membrane protein with ten transmembrane domains and cytosolic N- and C-termini, is intrinsically silent.

View Article and Find Full Text PDF

Hemophilia B gene therapy treatments currently have not addressed the need for predictable, durable, active, and redosable factor IX (FIX). Unlike conventional gene therapy, engineered B Cell Medicines (BCMs) are durable, redosable, and titratable, and thus have the potential to address significant unmet needs in the Hemophilia B treatment paradigm. BE-101 is an autologous BCM comprised of expanded and differentiated B lymphocyte lineage cells genetically engineered ex vivo to secrete FIX-Padua.

View Article and Find Full Text PDF

Harnessing biomarkers to guide immunotherapy in esophageal cancer: toward precision oncology.

Clin Transl Oncol

September 2025

Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman, University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia.

Esophageal cancer (EC) is one of the most serious health issues around the world, ranking seventh among the most lethal types of cancer and eleventh among the most common types of cancer worldwide. Traditional therapies-such as surgery, chemotherapy, and radiation therapy-often yield limited success, especially in the advanced stages of EC, prompting the pursuit of novel and more effective treatment strategies. Immunotherapy has emerged as a promising option; nonetheless, its clinical success is hindered by variable patient responses.

View Article and Find Full Text PDF

Biofortification of tomatoes with beta-carotene through targeted gene editing.

Int J Biol Macromol

September 2025

Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China. Electronic address:

Vitamin A deficiency is one of the most severe micronutrient-related health issues worldwide. Tomatoes, a widely cultivated crop for their adaptability, nutritional value, and lycopene content (a beta-carotene precursor), are ideal candidates for biofortification. In this study, CRISPR-mediated knockout mutants (cr-SlLCYe and cr-SlBCH) were generated to enhance the precursor supply to the β-carotene biosynthetic pathway and reduce its degradation.

View Article and Find Full Text PDF