98%
921
2 minutes
20
Nanoparticle-polymer composite gratings incorporating ultrahigh-refractive-index hyperbranched polymers as organic nanoparticles have demonstrated exceptional light optical properties, yet their potential for neutron diffraction applications remains unexplored. We report on the neutron optical properties of a holographically structured hyperbranched-polymer-dispersed nanocomposite grating at a quasi-monochromatic neutron wavelength of 2 nm. We show that neutron diffraction measurements performed at the SANS-I instrument of the Paul Scherrer Institute (Switzerland) reveal exceptionally high neutron scattering length density modulation amplitudes. These scattering length density modulation amplitudes are the highest reported to date. Very high neutron diffraction efficiency is expected with the use of thicker uniform gratings and longer neutron wavelengths, with low angular and wavelength selectivity constraints.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381226 | PMC |
http://dx.doi.org/10.1038/s41598-025-16998-z | DOI Listing |
Background: Costs associated with robotic pancreatectomy compared to those of open pancreatectomy are assumed to be high but are not well known, particularly during the initial implementation of the robot.
Study Design: Patients who underwent pancreatectomy for any diagnosis from January 2017 to August 2021 were identified retrospectively. Total hospital cost was calculated using intraoperative, inpatient, and outpatient costs within 30 days of surgery.
Angew Chem Int Ed Engl
September 2025
College of Chemistry, Zhengzhou University, 100 Kexue Street, Zhengzhou, 450001, China.
Achieving quantitative control over interlayer spacing in multilayer two-dimensional (2D) supramolecular organic frameworks (SOFs) remains a fundamental challenge. Here, we report a molecular pillar engineering strategy enabling programmable vertical expansion of bilayer architectures. By designing elongated bipyridine pillars L2/L3 (3.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, Stamford Street, London, SE1 9NH, UK.
As supramolecular assemblies, polypseudorotaxanes (PPR) exhibit inherent advantages in modular adaptability and structural programmability, with the potential to build tuneable platforms integrating various functionalities. Here we report the "one-pot" preparation of a self-assembled thiol-rich PPR (SPPR), where thiolated-α-cyclodextrins (SHαCD) spontaneously thread onto polymers, and are then crosslinked into a three-dimensional network by the thermally-triggered oxidation of thiols into disulfide bonds. The dynamic thiol groups along the SPPR provide remarkable modularity for the functionalization of thiophilic metal nanoparticles (NPs), exemplified by two application vectors.
View Article and Find Full Text PDFChem Rev
September 2025
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Achieving precise control of materials synthesis is a cornerstone of modern manufacturing, driving efficiency, functionality, and device innovation. This review examines the roles of transmission electron microscopy (TEM) and neutron scattering (NS) in advancing our understanding of these processes. TEM offers atomic-scale insights into nucleation, growth, and phase transitions, while NS provides an analysis of reaction pathways, phase evolution, and structural transformations over broader length scales.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Pharmacy, Minhang Hospitial, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
Raman spectroscopy with surface-enhanced Raman scattering (SERS) through metal substrates is a highly precise bioimaging technique. Alternatively, recently discovered small molecules to enhance the Raman signal intensities through their self-stacking, termed stacking-induced intermolecular charge transfer-enhanced Raman scattering (SICTERS), offer ultrasensitive in vivo Raman imaging free of substrates. Molecular engineering to increase the SICTERS intensity and to tune photothermal conversion efficiency of these molecules is critical for furthering their biomedical application but not yet feasible.
View Article and Find Full Text PDF