Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbapenem resistance genes in Gram-negative bacteria (CR-GNB) are a major cause of critical infections and are considered an urgent public health concern. The present study aimed to describe the prevalence of CR-GNB and the dissemination of extended-spectrum beta-lactamase (ESBL) and carbapenemase genes in clinical isolates from Casablanca, Morocco. Firstly, the strains were collected and identified using phenotypic and biochemical methods, then the antibiotic susceptibility was evaluated by the disc diffusion assay to screen isolates resistant to carbapenems. Secondly, three traditional methods, the carbapenem inactivation method, the modified Hodge, and the in-house carba-NP, were performed to predict the carbapenemase production by the included strains. Finally, conventional PCR was utilized to validate and detect the carbapenemase- and ESBL-related genes. Concerning the results, out of the identified 122 strains, 48 were CR isolates, including 30 Klebsiella pneumoniae, 13 Escherichia coli, and 5 Pseudomonas aeruginosa. Furthermore, these strains presented a high level of resistance. Moreover, the prediction of carbapenemase production by the phenotypic methods showed variable results. Also, the PCR analysis revealed a high occurrence of β-lactamase (ESBL and carbapenemase) genes in the included clinical strains, and most strains harbored multiple resistance genes. Our findings suggest that the three existing methods have some limitations, and a validation study is still necessary for the carbapenemase diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cimid.2025.102399DOI Listing

Publication Analysis

Top Keywords

gram-negative bacteria
8
casablanca morocco
8
resistance genes
8
esbl carbapenemase
8
carbapenemase genes
8
carbapenemase production
8
genes
6
strains
6
carbapenemase
5
phenotypic genotypic
4

Similar Publications

Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.

View Article and Find Full Text PDF

The emergence of antimicrobial resistance (AMR) Escherichia coli in poultry farming is a growing global public health concern, particularly in Bangladesh, where the use of antibiotics remains largely unregulated. This study aimed to determine the prevalence and AMR patterns of E. coli isolated from broiler chickens in Sylhet district of Bangladesh and to investigate the network of coexisting resistance traits among the isolates.

View Article and Find Full Text PDF

Multi drug resistant Pseudomonas aeruginosa in burn infection among Iraq patients.

Cell Mol Biol (Noisy-le-grand)

September 2025

Medical Microbiology Department, College of Medicine, Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq.

Pseudomonas aeruginosa is a prominent opportunistic pathogen, especially in burn wound infections, and is often associated with high morbidity and mortality due to its multidrug resistance (MDR) characteristics.This study aimed to evaluate the multidrug resistance profile and perform a molecular phylogenetic analysis of P. aeruginosa isolates recovered from human burn infection sample .

View Article and Find Full Text PDF

Prevalence, characterization, and transmissible factors of foodborne pathogens in the Al-Qassim Region, Saudi Arabia.

Cell Mol Biol (Noisy-le-grand)

September 2025

Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 P.O. Box 6666, Saudi Arabia.

Foodborne illnesses pose a significant public health threat globally, particularly in Saudi Arabia, where the rapid growth of the food service sector has increased the risk of exposure to multidrug-resistant (MDR) bacteria. Traditional microbiological methods are often time-consuming and may lack precision, highlighting the need for faster and more accurate diagnostic alternatives. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was employed for the rapid and precise identification of bacterial contaminants in ready-to-eat (RTE) foods, alongside an assessment of their antibiotic resistance profiles.

View Article and Find Full Text PDF

Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.

View Article and Find Full Text PDF