Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microplastics (MPs) are an emerging pollutant that needs effective bioremediation strategies. Strategies, including microbial implementation, enzymes, and insect-mediated degradation, have been effectively deployed and reviewed for the biodegradation of MPs. Thus, this review focused on utilizing multiple stressors (biotic and abiotic) to enhance MPs biodegradation. MPs degradation mechanism, major enzymes involved, and stress-mediated bacterial responses are highlighted. The key routes for MPs biodegradation under various stress are covered. Furthermore, the applications of stresses on wastewater treatment plants (WWTPs) for real-world application are also considered. Thermus sp. is reported to remediate polystyrene (PS) by 43.7% at 40-80 °C stress, whereas pH stress showed enhanced low-density polyethylene (LDPE) biodegradation (9.9%) under B. krulwichiae. Salinity up to 3 M NaCl, when applied to Bacillus sp., showed 48 times higher protease content. Radiation UV-C on P. aeruginosa increased polyethylene/polystyrene (PE/PS) protease activity by 75.47%. The bacterial response to stress was reported to be mediated by enzyme upregulation, biofilm formation, and metabolic shifts. Targeted stress enhanced MPs biodegradation through specific bacterial adaptations and enzymatic activity. Particular stress requires a specific mechanism to accelerate bacterial MPs degradation. Future research should aim to explore the synergistic effects of combined stressors, conduct comprehensive ecological risk assessments, and implement large-scale field trials to ensure the sustainability and ecosystem compatibility of stress-mediated MPs bioremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-025-04525-1DOI Listing

Publication Analysis

Top Keywords

mps degradation
12
mps biodegradation
12
mps
9
microplastics mps
8
biodegradation mps
8
stress enhanced
8
stress
7
biodegradation
5
enhancement environmental
4
environmental microplastics
4

Similar Publications

Plastics degradation generates microplastics (MPs), posing a risk to soil function and organisms. Currently, the impact of MPs derived from different polymers remains poorly understood. In this study, the effects of three polymers (polypropylene (PP), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT)) were investigated at environmentally relevant levels (0, 0.

View Article and Find Full Text PDF

Microbial Physiological Adaptation to Biodegradable Microplastics Drives the Transformation and Reactivity of Dissolved Organic Matter in Soil.

Environ Sci Technol

September 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.

The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.

View Article and Find Full Text PDF

Hepatotoxicity induced by polylactic acid microplastics: The mediating role of gut microbiota and uric acid metabolism.

J Adv Res

September 2025

National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address: huangzhenlie85825

Introduction: The increasing use of biodegradable plastics has led to the inevitable human consumption of biodegradable microplastics (MPs). These MPs can be degraded and absorbed into various organs and tissues via the gastrointestinal tract, with the liver being the primary target for digestion and absorption.

Objectives: This study aimed to investigate the toxic effects and mechanisms of biodegradable MPs on the liver following gastrointestinal degradation.

View Article and Find Full Text PDF

Nanobioreactor detection of space-associated hematopoietic stem and progenitor cell aging.

Cell Stem Cell

September 2025

Sanford Stem Cell Institute Integrated Space Stem Cell Orbital Research (ISSCOR) Center, Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA. Electronic address:

Human hematopoietic stem and progenitor cell (HSPC) fitness declines following exposure to stressors that reduce survival, dormancy, telomere maintenance, and self-renewal, thereby accelerating aging. While previous National Aeronautics and Space Administration (NASA) research revealed immune dysfunction in low-earth orbit (LEO), the impact of spaceflight on human HSPC aging had not been studied. To study HSPC aging, our NASA-supported Integrated Space Stem Cell Orbital Research (ISSCOR) team developed bone marrow niche nanobioreactors with lentiviral bicistronic fluorescent, ubiquitination-based cell-cycle indicator (FUCCI2BL) reporter for real-time HSPC tracking in artificial intelligence (AI)-driven CubeLabs.

View Article and Find Full Text PDF

The purpose of this study was to investigate the sex-specific differences in how late-midlife adults respond to short term disuse and rehabilitation. Sixteen, late-midlife adults, who were free of overt disease (8 males; 58±2 yr; BMI 29.4±0.

View Article and Find Full Text PDF