Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Isobutylene (IB) is produced on a large scale by the petrochemical industry and is metabolized by the aerobic alkene-metabolizing bacterium sp. ELW1. The initial metabolite of IB catabolism by this bacterium is proposed to be 2-methyl-1,2-epoxypropane (isobutylene oxide [IBO]). The epoxide is then thought to be rapidly converted into 2-methyl-1,2-propanediol (MPD) by an epoxide hydrolase. A gene () encoding a hydrolase is in a putative IB catabolism gene cluster on a ~222-kbp megaplasmid. This gene was cloned, heterologously expressed, and purified by Ni-NTA affinity chromatography. The purified protein rapidly and stoichiometrically hydrolyzed IBO to MPD with a specific activity of 29 µmoles min mg protein. Additional epoxides were also hydrolyzed by IbcK, including 1,2-epoxypropane, 1,2-epoxybutane, 1,2-epoxypentane, epichlorohydrin, and cyclohexane oxide, albeit at lower rates than IBO. IbcK also slowly hydrolyzed both - and -2,3-epoxybutane, which are the only other epoxides other than IBO known to support the growth of sp. ELW1. Furthermore, IbcK also appears to be enantioselective towards chiral 2,3-epoxybutane. The crystal structure of IbcK was determined at 2.29 Å resolution, revealing a two-domain structure with an α/β hydrolase fold topology at its core. IbcK has high similarity to the epoxide hydrolase EchA from AD1, including the key active site residues Asp 117, Asp 256, and His 284. IbcK was observed to be in monomer-dimer equilibrium, which we propose occurs through interactions between the "cap" domains.IMPORTANCEThe initial metabolites generated during catabolism of volatile alkenes by aerobic alkene-oxidizing bacteria are consistently epoxides. These bacteria employ several different mechanisms to protect DNA, lipids, and proteins from damage by these reactive metabolites. The most common mechanisms are conjugation with coenzyme M or glutathione. In contrast, the role for hydrolases in the bacterial metabolism of volatile alkenes and their epoxides has not been frequently observed. The enzymatic, functional, and structural characterization of an epoxide hydrolase (IbcK) from the IB-utilizing bacterium sp. ELW1 described here advances our understanding of these enzymes and suggests their potential application as an enantioselective catalyst. This study advances our understanding of how microorganisms utilize aliphatic alkenes, such as carbon and energy sources, including the role of epoxide hydrolases in these catabolic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1128/aem.00393-25DOI Listing

Publication Analysis

Top Keywords

epoxide hydrolase
16
bacterium elw1
12
ibck
8
hydrolase ibck
8
volatile alkenes
8
advances understanding
8
epoxide
6
hydrolase
6
characterization isobutylene
4
isobutylene epoxide
4

Similar Publications

Genetic studies have linked (encoding soluble epoxide hydrolase, sEH) and (encoding cyclooxygenase-2, COX-2) to Alzheimer's disease (AD). Elevated levels of sEH and COX-2 found in AD patients and animals suggest their involvement in neurodegeneration, glial activation, vascular dysfunction, and inflammation. This study evaluated the effects of a new dual sEH/COX-2 inhibitor, PTUPB, on cerebrovascular function and cognition in TgF344-AD rats.

View Article and Find Full Text PDF

A novel series of triazole-linked indole derivatives was designed, synthesized, and evaluated as soluble epoxide hydrolase inhibitors (sEHIs) for their potential anticancer activity. These compounds exhibit strong binding affinity within the hydrophobic pockets of sEH, with compounds 9a and 9b emerging as the most potent inhibitors, achieving IC₅₀ values of 0.270 ± 0.

View Article and Find Full Text PDF

Background: Macrophage immunomodulation has emerged as a novel intervention and therapeutic strategy for temporomandibular joint osteoarthritis (TMJOA), potentially serving as a key approach for reducing synovial inflammation and promoting cartilage repair. The soluble epoxide hydrolase inhibitor (sEHi), TPPU, has shown potential therapeutic effects against inflammatory diseases and osteogenesis by elevating endogenous Epoxyeicosatrienoic acids (EETs). However, it remains largely unknown whether TPPU can reduce inflammation and cartilage degradation in the TMJOA.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) represents a common malignancy in the head-and-neck region, and its development and prognosis can be influenced by multiple factors. Epoxide hydrolase 3 (EPHX3) is an enzyme that perform crucial roles in inflammation and tumors regulation. We aim to discuss the expression pattern and biological function of EPHX3 in NPC.

View Article and Find Full Text PDF

Genetic engineering of Sorangium cellulosum reveals hidden enzymology in myxobacterial natural product biosynthesis.

Nat Commun

August 2025

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Sorangium cellulosum is a cellulolytic myxobacterium that produces a vast array of complex natural products with diverse chemical scaffolds and biological activities. However, biosynthetic investigations of these metabolites have been hindered by the scarcity of genetic manipulation tools available for their producing microorganisms. Here, we develop an efficient electroporation method for transforming foreign DNA into various Sorangium strains, enabling effective genetic engineering via homologous recombination.

View Article and Find Full Text PDF