98%
921
2 minutes
20
is a primary malaria vector mosquito in Africa. RNA-seq based transcriptome analysis has been widely used to study gene expressions underlying mosquito life traits such as development, reproduction, immunity, metabolism, and behavior. While it is widely appreciated that long non-coding RNAs (lncRNAs) are expressed ubiquitously in transcriptomes across metazoans, lncRNAs remain relatively underexplored in , including their identity, expression profiles, and biological functions. The lncRNA genes were poorly annotated in the current reference of the PEST genome of . In this study, a set of publicly available RNA-seq datasets was leveraged to identify lncRNAs across diverse contexts, including whole mosquitoes, mosquito cells or tissues including hemocytes, midguts, and salivary glands, as well as under different physiological conditions including sugar-feeding, blood-feeding, bacterial challenges, and infections. A Transcript Discovery module implemented in CLC genomics workbench was used to identify lncRNAs from selected published RNA-seq datasets. Across this pool of transcriptomes, 2684 unique lncRNA genes, comprising 4082 transcripts, were identified. Following their identification, these lncRNA genes were integrated into the mosquito transcriptome annotation, which was then used as a reference to analyze both mRNAs and lncRNAs for transcriptional dynamics in different conditions. Unsurprisingly and similar to what has been reported for mRNAs, lncRNAs exhibited context-dependent expression patterns. Co-expression networks constructed using weighted gene co-expression network analysis (WGCNA) highlighted the interconnections among lncRNAs and mRNAs, which provides potential functional networks in which these lncRNAs are involved. Furthermore, we identified polysome-associated lncRNAs within polysome-captured transcripts, suggesting the involvement of lncRNAs in translation regulation and coding capacity for micropeptides. The analysis of a ChIP-seq dataset unveiled a correlation of transcriptional activities between lncRNAs and observed epigenetic signatures. Overall, our study demonstrated that lncRNAs are transcribed alongside mRNAs in various biological contexts. The genome-wide annotation of lncRNA genes and integration into the PEST reference genome enables the co-analysis of mRNA and lncRNA simultaneously, which will enhance our understanding of their functions, shedding light on their regulatory roles in biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376855 | PMC |
http://dx.doi.org/10.3389/frnar.2025.1555885 | DOI Listing |
Mol Biol Rep
September 2025
Phytoveda Pvt. Ltd, Mumbai, 400022, India.
Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.
Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.
JACC Basic Transl Sci
September 2025
BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands. Electronic address: andy.bak
Coronary artery bypass graft (CABG) surgery remains the gold standard of care to prevent myocardial ischemia in patients with advanced atherosclerosis; however, poor long-term graft patency remains a considerable and long-standing problem. Excessive vascular smooth muscle cell (SMC) proliferation in the grafted tissue is recognized as central to late CABG failure. We previously identified SMILR, a human-specific SMC-enriched long noncoding RNA that drives SMC proliferation, suggesting that targeting SMILR expression could be a novel way to prevent neointima formation, and thus CABG failure.
View Article and Find Full Text PDFOnco Targets Ther
September 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
Background: Insulinoma, the most common type of pancreatic endocrine tumor, frequently induces hypoglycemia due to persistent hyperinsulinemia. Although Mi-Lnc70 expression progressively increases during pancreatic maturation in mice, the biological role of Mi-Lnc70 in pancreatic β cells remains elusive.
Aim: This study was designed to investigate the role of LncRNA-Mi-Lnc70 in the mouse pancreatic β-cell line MIN6.
Plant J
September 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.
View Article and Find Full Text PDFPLoS One
September 2025
Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
Background: Disulfidptosis, a novel cellular death manner, has yet to be fully explored within the context of pulmonary arterial hypertension (PAH). This study aims to identify genes implicated in PAH that are involved in disulfidptosis.
Method: Based on data from the GEO database, this study employed co-expression analysis, Weighted Gene Co-Expression Network Analysis (WGCNA), hub gene identification, and Gene Set Enrichment Analysis (GSEA) to uncover genes associated with PAH and disulfidptosis.