98%
921
2 minutes
20
The rising global prevalence of diabetes underscores the need for highly selective sodium-glucose cotransporter (SGLT) inhibitors, which are essential for glucose regulation. While human Na-D-glucose cotransporter (hSGLT) inhibitors offer therapeutic potential, the high sequence similarity between SGLT1 and SGLT2 complicates selective inhibitor design. To elucidate the selective inhibition mechanisms of SGLT1/2, molecular dynamics (MD) simulations and quantum calculations were combined to explore SGLT1/2 inhibition mechanisms. Microsecond-level MD simulations were performed on 22 SGLT protein-ligand complexes and 97 highly selective inhibitors were used in the DFT calculations. Our results highlight that spatial complementarity between ligands and SGLT binding pockets is key to selectivity. For example, SGLT1-selective ligands with trifluoromethyl or isopropyl groups on the pyrazole ring optimize interactions with ASN78. In SGLT2, GLN457 forms two stable hydrogen bonds with high-selectivity inhibitors but only one with low-selectivity ligands, explaining selectivity differences. Comprehensive DFT calculations of critical non-covalent interactions elucidated their stability and strength. Additionally, atomic dipole moment corrected Hirshfeld charge calculations revealed ligand charge distribution differences, clarifying their behaviors in MD simulations and providing insights into molecular design. In conclusion, this study elucidates the selective mechanisms of SGLT1 and SGLT2, with a comprehensive examination of the differences in their binding pockets, offering valuable insights for designing highly selective inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5cp00708a | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
September 2025
College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g
The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.
View Article and Find Full Text PDFInorg Chem
September 2025
Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China.
Sequential assembly of donor-acceptor components at the molecular level within a MOF is an effective strategy to achieve efficient electron-hole separation for enhancing the activity of photocatalysts. Meanwhile, the highly efficient and selective functionalization of tetrahydroisoquinoline (THIQ) under mild conditions remains an urgent demand in both the scientific and industrial communities. This work reports a donor-acceptor MOF photocatalyst () constructed by the coordinated assembly of donor and acceptor components, in which a naphthalene unit serves as an electron donor and a perylenediimide unit as an electron acceptor.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
Pax-5a gene, as a nucleic acid biomarker closely associated with B-cell acute lymphoblastic leukemia (B-ALL), holds significant potential for early disease diagnosis. In this study, we developed a highly accurate and efficient "on-super on-off" photoelectrochemical (PEC) biosensor based on a dual-photoelectrode heterojunction system integrated with a multisphere cascade DNA amplification strategy. The designed heterojunction dual-photoelectrode platform, comprising a InO/CdS photoanode (on state) and an in situ-formed MIL-68(In)/InO (MIO) photocathode, effectively extends the electron-hole transport pathway, enhances photogenerated charge separation, and produces high-amplitude signal output (super on state), thereby providing a robust baseline for signal transduction.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.
View Article and Find Full Text PDFClin Pharmacol Drug Dev
September 2025
Phase I Clinical Research Centre, Wuhan Pulmonary Hospital, Wuhan, China.
Tamsulosin is a highly selective α1A adrenergic receptor antagonist that can relax smooth muscles in the urethra, bladder neck, and prostate and improve urinary disorders. It is therefore widely used to treat lower urinary tract symptoms caused by benign prostatic hyperplasia. The aim of this study is to evaluate the pharmacokinetic (PK) characteristics and bioequivalence of 2 different formulations (tamsulosin sustained-release tablets and tamsulosin sustained-release capsules) in healthy Chinese subjects.
View Article and Find Full Text PDF