98%
921
2 minutes
20
Bone is a remarkable dynamic tissue, continually undergoing intricate processes of development, repair, and lifelong remodeling, all vital for maintaining skeletal integrity, facilitating injury recovery, and preserving overall health. Mesenchymal stem cells (MSCs) are central to these processes, characterized by their self-renewal capacity, multipotent differentiation (including osteoblasts), and crucial roles in secreting growth factors and remodeling the extracellular matrix. The highly conserved transcription factors FOXC1 and FOXC2 are crucial for correct skeletal development, profoundly influencing both intramembranous and endochondral ossification. Beyond these established developmental functions, recent evidence illuminates their critical emerging roles in actively regulating MSC osteogenic commitment and promoting osteoblastic differentiation, particularly in early cellular stages. FOXC1, for instance, orchestrates the expression of key osteogenic and chondrogenic transcription factors such as SOX9 (vital for endochondral ossification) and MSX2 (paramount in intramembranous bone formation). FOXC2, in turn, significantly contributes to osteoblast maturation through robust activation of the WNT/β-catenin signaling pathway. Furthermore, compelling experimental studies now directly implicate FOXC1 and FOXC2 in adult bone repair, the maintenance of bone mineral density (BMD), and the modulation of joint health. This bridges their developmental significance to substantial therapeutic potential in adult skeletal pathologies. This review comprehensively synthesizes current understanding of the developmental and emerging adult roles of FOXC1 and FOXC2 in bone biology, with a focused exploration of their underlying molecular and cellular mechanisms in osteogenesis. We also critically discuss their promising therapeutic potential in prevalent skeletal conditions such as fractures, osteoporosis, and osteoarthritis, illustrating how insights from embryonic bone formation can directly inform novel strategies for enhancing adult bone regeneration and remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2025.114712 | DOI Listing |
Exp Cell Res
August 2025
Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Bone is a remarkable dynamic tissue, continually undergoing intricate processes of development, repair, and lifelong remodeling, all vital for maintaining skeletal integrity, facilitating injury recovery, and preserving overall health. Mesenchymal stem cells (MSCs) are central to these processes, characterized by their self-renewal capacity, multipotent differentiation (including osteoblasts), and crucial roles in secreting growth factors and remodeling the extracellular matrix. The highly conserved transcription factors FOXC1 and FOXC2 are crucial for correct skeletal development, profoundly influencing both intramembranous and endochondral ossification.
View Article and Find Full Text PDFDevelopment
August 2024
Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
The Forkhead box transcription factors FOXC1 and FOXC2 are expressed in condensing mesenchyme cells at the onset of endochondral ossification. We used the Prx1-cre mouse to ablate Foxc1 and Foxc2 in limb skeletal progenitor cells. Prx1-cre;Foxc1Δ/Δ;Foxc2Δ/Δ limbs were shorter than controls, with worsening phenotypes in distal structures.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2024
Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL.
Background: Mitral valve (MV) disease including myxomatous degeneration is the most common form of valvular heart disease with an age-dependent frequency. Genetic evidence indicates that mutations of the human transcription factor are associated with MV defects, including MV regurgitation. In this study, we sought to determine whether murine and its closely related factor, , are required in valvular endothelial cells (VECs) for the maintenance of MV leaflets, including VEC junctions and the stratified trilaminar ECM (extracellular matrix).
View Article and Find Full Text PDFGenomics
May 2024
Scientific Research Center, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China. Electronic address:
Conotruncal heart defects (CTD), subtypes of congenital heart disease, result from abnormal cardiac outflow tract development (OFT). FOXC1 and FOXC2 are closely related members of the forkhead transcription factor family and play essential roles in the development of OFT. We confirmed their expression pattern in mouse and human embryos, identifying four variants in FOXC1 and three in FOXC2 by screening these two genes in 605 patients with sporadic CTD.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
March 2024
Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Republic of Korea.
Purpose: Intraflagellar transport 46 (IFT46) is an integral subunit of the IFT-B complex, playing a key role in the assembly and maintenance of primary cilia responsible for transducing signaling pathways. Despite its predominant expression in the basal body of cilia, the precise role of Ift46 in ocular development remains undetermined. This study aimed to elucidate the impact of neural crest (NC)-specific deletion of Ift46 on ocular development.
View Article and Find Full Text PDF