Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, a novel wide range microinverter circuit that can interface with a single-phase grid and operates without a transformer is presented. The proposed topology uses six switches: two of those switches function at line frequency every half cycle while the other switches function at high switching frequency. In the proposed topology, the circuit functions in discontinuous conduction mode (DCM) across all possible operating conditions, ensuring high gain and minimal switching losses. A common connection between the PV panel and the grid exists, ensuring no common mode current. The proposed topology naturally decouples the power between the DC and AC sides without using an active power decoupling circuit. Passive power decoupling techniques implemented using a large electrolytic capacitor which is very well known to have low reliability is also not needed. Thus, the microinverter's reliability is increased by using thin film capacitors. The analysis and verification of the proposed system are presented in this paper. Additionally, a standalone version of the presented circuit is verified experimentally through a fabricated prototype. In addition to the benefits of the presented circuit, both simulation and experimental data demonstrate that the circuit can operate without requiring a duty cycle constraint, offering significantly greater flexibility and a wider operating range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373757PMC
http://dx.doi.org/10.1038/s41598-025-15277-1DOI Listing

Publication Analysis

Top Keywords

power decoupling
12
proposed topology
12
novel wide
8
switches function
8
presented circuit
8
circuit
6
wide input
4
input range
4
range transformerless
4
transformerless microinverter
4

Similar Publications

Disordered rock-salt LiVO (DRX-LVO) anode exhibits distinctive 3D Li percolation transport networks, which offers the unique advantage for ultra-charging. However, the existing chemical lithiation preparation routes not only pose safety risks due to the use of highly reactive reagents but also inevitably result in products with poor crystallinity. Investigating the origin, impact, and strategies for crystallinity degradation is pivotal for advancing the industrialization of chemical lithiation.

View Article and Find Full Text PDF

Chocolates and other cocoa products represent a multibillion-dollar industry that has faced significant price increases, largely due to a surge in cocoa plant diseases linked to climate change. One potential solution for mitigating cocoa prices involves the use of cocoa butter equivalents, substitutes, or replacers. Consequently, a rapid method for simultaneously determining multiple properties of cocoa derivatives can serve as a valuable tool for research and development of new products, quality control, and regulatory agencies to ensure compliance with cocoa product standards.

View Article and Find Full Text PDF

Unlabelled: In magnetic resonance imaging, graph signal processing (GSP) is an analytical framework that enables to express regional functional activity time courses in terms of the underlying structural connectivity backbone. To this end, several parameters must be set during the processing of structural and functional data, and a variety of output features have been proposed. While emerging applications of the GSP framework have shown clear merits to reveal the neural underpinnings of brain disorders, behavioural facets or individuality, at present, the optimal parameter choices and feature types for an outcome of interest remain unknown.

View Article and Find Full Text PDF

Environmental Drivers of Phytoplankton Structure in a Semi-Arid Reservoir.

Biology (Basel)

July 2025

College of Life Sciences and Technology, Tarim Research Center of Rare Fishes, State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Tarim University, Alar 843300, China.

Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental drivers in 17 artificial reservoirs in the Ili region of Xinjiang in August and October 2024. The Ili region is located in the temperate continental arid zone of northwestern China.

View Article and Find Full Text PDF

Evaporation-Driven Fabric for Synergistic Water-Electricity-Lithium Co-Production.

Adv Mater

September 2025

State Key Laboratory for Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.

Water evaporation constitutes a ubiquitous physical phenomenon. This natural process enables efficient energy and resource harvesting through water interacting with materials with tailored structural, chemical, and thermal properties. Here, this work designs an evaporation-driven fabric (e-fabric) that enables the utilization of water-electricity-lithium from brine through three optimized functional layers.

View Article and Find Full Text PDF