98%
921
2 minutes
20
Organophosphate esters (OPEs) have emerged as a global environmental and health concern due to their persistent, bioaccumulative, and toxic (PBT) properties. Recently, their precursors-organophosphite antioxidants (OPAs)-and transformation products, which may exhibit greater persistence and toxicity, have gained attention as critical contributors to OPE-related contamination. This critical review examines the transformation mechanisms of "OPAs → OPEs → OPE derivatives" across environments, sources and emission inventory methodologies, and the environmental occurrence, persistence, and toxicity of these chemicals. Key findings include: 1) the prevalence of certain novel OPEs derived solely from OPAs; 2) the significant role of OPAs in OPE emissions; 3) higher OPA detection frequencies and concentrations near emission sources; and 4) increased persistence of some OPE derivatives compared to parent compounds. However, critical knowledge gaps remain: 1) limited understanding of transformation mechanisms and products; 2) rough and incomplete emission factors without consideration of specific chemicals and emission via abrasion; 3) insufficient attention to a broader range of OPEs and OPAs beyond well-known examples like tris(2,4-di-tert-butylphenyl) phosphite (AO168) and its oxidized form tris(2,4-di-tert-butylphenyl) phosphate (AO168 =O); 4) lack of simultaneous studies concerning all three chemical categories simultaneously within a single gauging work for better understanding their association and therefore sources and fate; and 5) inadequate toxicity and degradation data for novel OPE and derivatives, hindering a comprehensive risk assessment of OPEs. Addressing these gaps is crucial for accurate risk assessment of OPE ecological and human health risks, enabling better management strategies for OPEs and their relevant chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.139596 | DOI Listing |
Sci Total Environ
September 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:
The widespread application of chemical additives in textiles raises concerns about dermal exposure, especially in children. We analyzed 28 per- and polyfluoroalkyl substances (PFAS) and 9 organophosphate esters (OPEs) in household textiles and children's garments. PFAS were detected in 87.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
To characterize the bioaccessibility of inhaled organophosphate esters (OPEs) in the respiratory tract, we employed a highly idealized mouth-throat model to investigate the occurrence, distribution, and deposition of 17 OPEs in airborne particulate matter (PM, PM, and PM; = 80 pairs) and gas phases ( = 48) under gradient temperature and humidity. OPEs concentrations were also measured in exhaled breath condensate (EBC; = 50) and sputum ( = 30) from 30 adults. Total median ∑OPEs concentrations in inhaled air were 4.
View Article and Find Full Text PDFAnal Chim Acta
October 2025
State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Techno
Background: Organophosphate tri-esters (tri-OPEs), widely used flame retardants, include alkyl-, halogenated-, and aryl-substituted types with distinct physicochemical properties. They may readily enter the ambient environment through volatilization, mechanical abrasion, and dissolution mechanisms occurring throughout the product lifecycle. To date, a range of monitoring methodologies incorporating sample pretreatment techniques have been developed to characterize the environmental distribution of tri-OPEs.
View Article and Find Full Text PDFArch Toxicol
September 2025
Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
Organophosphate esters (OPEs), commonly used as flame retardants and plasticizers, are ubiquitous environmental contaminants, with high concentrations found in indoor house dust. Previously, we have reported that individual OPEs have adverse effects on HepG2 liver cells. However, real-world exposure involves mixtures of OPEs.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
Institute of Environmental Assessment and Water Research, (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
This study presents a methodology for sampling, preserving, and analyzing 15 organophosphate esters (OPEs), 11 phthalate esters (PEs), and 6 alternative plasticizers (APs) in indoor air. Accurate quantification is essential, given their widespread use in household items and adverse health effects associated with exposure. Solid-phase extraction (SPE) cartridges, collecting both gaseous and particulate phases, connected to a low-volume pump were used for the collection of air samples.
View Article and Find Full Text PDF