Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The COVID-19 pandemic response demonstrated the effectiveness of adenovirus vector vaccines in inducing protective cellular and antibody responses. However, we still lack mechanistic understanding of the factors regulating immunity induced by this platform, especially innate pathways. We utilized a human tonsil organoid model to study the regulation of adaptive responses to ChAdOx1 nCoV-19. Innate activation and cytokine release occurred within 24 hours and T and B cell activation and antigen-specific antibody secretion occurred during the ensuing 14-day culture. Among the immune cell populations, plasmacytoid dendritic cells (pDCs) exhibited the highest ChAdOx1 transduction levels. pDC-derived IFN-ɑ was critical for humoral responses, but production of antigen in pDCs was dispensable. Furthermore, IL-6 enhanced humoral responses in both IFN-ɑ-dependent and independent manners, indicating intricate signaling interplay. IFN-ɑ and IL-6 also regulated the function of vaccine-activated CD4+ T cells, including TFH. These data provide key insights into innate pathways regulating ChAdOx1-induced immunity and highlights the promise of this model for vaccine platform mechanistic studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393735PMC
http://dx.doi.org/10.1371/journal.ppat.1013432DOI Listing

Publication Analysis

Top Keywords

innate pathways
12
human tonsil
8
responses chadox1
8
humoral responses
8
responses
5
tonsil organoids
4
organoids reveal
4
innate
4
reveal innate
4
pathways modulating
4

Similar Publications

Mechanisms underlying cardiovascular, affective, and metabolic (CAM) multimorbidity are incompletely defined. We assessed how two risk factors-chronic stress (CS) and a Western diet (WD)-interact to influence cardiovascular function, resilience, adaptability, and allostatic load (AL); explore pathway involvement; and examine relationships with behavioral, metabolic, and systemic AL. Male C57Bl/6 mice (8 weeks old, n = 64) consumed a control (CD) or WD (12%-65%-23% or 32%-57%-11% calories from fat-carbohydrate-protein) for 17 weeks, with half subjected to 2 h daily restraint stress over the final 2 weeks (CD + CS and WD + CS).

View Article and Find Full Text PDF

Objectives: Juvenile dermatomyositis (JDM) is a heterogeneous autoimmune condition needing targeted treatment approaches and improved understanding of molecular mechanisms driving clinical phenotypes. We utilised exploratory proteomics from a longitudinal North American cohort of patients with new-onset JDM to identify biological pathways at disease onset and follow-up, tissue-specific disease activity, and myositis-specific autoantibody (MSA) status.

Methods: We measured 3072 plasma proteins (Olink panel) in 56 patients with JDM within 12 weeks of starting treatment (from the Childhood Arthritis and Rheumatology Research Alliance Registry and 3 additional sites) and 8 paediatric controls.

View Article and Find Full Text PDF

Biomechanic regulation of neutrophil extracellular traps in the cardiovascular system.

Trends Immunol

September 2025

Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. Electronic address:

Neutrophil extracellular trap (NET) formation, or NETosis, is a key innate immune response that contributes to cardiovascular diseases, including vascular inflammation, atherosclerosis, and thrombosis. In the cardiovascular system, neutrophils encounter mechanical cues such as shear stress, matrix stiffness, and cyclic stretch that influence their activation and NET release. This review examines emerging evidence linking altered mechanotransduction to dysregulated NETosis in vascular aging and cardiovascular pathology.

View Article and Find Full Text PDF

Effects of microbial infection on key gene expression in the Toll signaling pathway and immune response in Myzus persicae.

Pestic Biochem Physiol

November 2025

Institute of Entomology, Guizhou University, Guizhou Key Laboratory of Agricultural Biosecurity, Guiyang 550025, China.

The Toll signaling pathway serves as a crucial regulatory mechanism in the insect innate immune system, playing a pivotal role in defending against pathogenic microorganisms. However, the specific functions of aphids' unique immune system and Toll signaling pathway remain poorly understood. In this study, we systematically analyzed 12 key genes associated with the Toll signaling pathway in Myzus persicae.

View Article and Find Full Text PDF

Vitamin D has been proposed to attenuate chemotherapy-induced gastrointestinal mucositis (GM). In the intestine, local catabolism of active vitamin D [1,25-dihydroxyvitamin D₃] is mediated by the enzyme Cyp24a1. This study assessed whether deletion of Cyp24a1 specifically in intestinal epithelial cells can protect against 5-fluorouracil (5-FU)-induced intestinal injury and microbiome disruption in mice.

View Article and Find Full Text PDF