98%
921
2 minutes
20
Akt3, a serine/threonine kinase within the PI3K-Akt-mTOR signaling pathway, is overactivated in various cancers, making it a promising therapeutic target. The research aimed to create compounds that selectively degrade Akt3, sparing Akt1 and Akt2, to enhance the clinical benefits. A series of compounds with different linkers and E3 ligands were synthesized and evaluated for their degradation potencies and selectivity. The findings showed that the linker length and E3 ligand type significantly influenced Akt3 degradation. Compound was identified as a potent and selective Akt3 degrader in multiple cancer cell lines. Proteomic analysis confirmed the specificity of this degrader for Akt3, with minimal off-target effects. However, compound did not exhibit significant antiproliferative activity in the cancer cell lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.5c00708 | DOI Listing |
Mutat Res Rev Mutat Res
September 2025
Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:
To maintain genomic stability, cells have evolved complex mechanisms collectively known as the DNA damage response (DDR), which includes DNA repair, cell cycle checkpoints, apoptosis, and gene expression regulation. Recent studies have revealed that long non-coding RNAs (lncRNAs) are pivotal regulators of the DDR. Beyond their established roles in recruiting repair proteins and modulating gene expression, emerging evidence highlights two particularly intriguing functions.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.
View Article and Find Full Text PDFJCO Precis Oncol
September 2025
Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA.
Purpose: mutations are classically seen in non-small cell lung cancers (NSCLCs), and EGFR-directed inhibitors have changed the therapeutic landscape in patients with -mutated NSCLC. The real-world prevalence of -mutated ovarian cancers has not been previously described. We aim to determine the prevalence of pathogenic or likely pathogenic mutations in ovarian cancer and describe a case of -mutated metastatic ovarian cancer with a durable response to osimertinib, an EGFR-directed targeted therapy.
View Article and Find Full Text PDFJCO Precis Oncol
September 2025
Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
Purpose: Tumor comprehensive genomic profiling (CGP) may detect potential germline pathogenic/likely pathogenic (P/LP) alterations as secondary findings. We analyzed the frequency of potentially germline variants and large rearrangements (LRs) in the RATIONAL study, an Italian multicenter, observational clinical trial that collects next-generation sequencing-based tumor profiling data, and evaluated how these findings were managed by the enrolling centers.
Patients And Methods: Patients prospectively enrolled in the pathway-B of the RATIONAL study and undergoing CGP with the FoundationOne CDx assays were included in the analysis.
Arq Gastroenterol
September 2025
Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil.
Background: Accurate evaluation of the invasion depth of superficial esophageal squamous cell carcinoma (SESCC) is crucial for optimal treatment. While magnifying endoscopy (ME) using the Japanese Esophageal Society (JES) classification is reported as the most accurate method to predict invasion depth, its efficacy has not been tested in the Western world. This study aims to evaluate the interobserver agreement of the JES classification for SESCC and its accuracy in estimating invasion depth in a Brazilian tertiary hospital.
View Article and Find Full Text PDF