Chemical Language Model Linker: Blending Text and Molecules with Modular Adapters.

J Chem Inf Model

Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of large language models and multimodal models has enabled the appealing idea of generating novel molecules from text descriptions. Generative modeling would shift the paradigm from relying on large-scale chemical screening to find molecules with desired properties to directly generating those molecules. However, multimodal models combining text and molecules are often trained from scratch, without leveraging existing high-quality pretrained models. Training from scratch consumes more computational resources and prohibits model scaling. In contrast, we propose a lightweight adapter-based strategy named ical anguage odel inker (ChemLML). ChemLML blends the two single domain models and obtains conditional molecular generation from text descriptions while still operating in the specialized embedding spaces of the molecular domain. ChemLML can tailor diverse pretrained text models for molecule generation by training relatively few adapter parameters. We find that the choice of molecular representation used within ChemLML, SMILES versus SELFIES, has a strong influence on conditional molecular generation performance. SMILES is often preferable despite not guaranteeing valid molecules. We raise issues in using the entire PubChem data set of molecules and their associated descriptions for evaluating molecule generation and provide a filtered version of the data set as a generation test set. To demonstrate how ChemLML could be used in practice, we generate candidate protein inhibitors and use docking to assess their quality and also generate candidate membrane permeable molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.5c00853DOI Listing

Publication Analysis

Top Keywords

molecules
8
text molecules
8
multimodal models
8
text descriptions
8
conditional molecular
8
molecular generation
8
molecule generation
8
data set
8
generate candidate
8
models
6

Similar Publications

Hydrogen Bond Disruption-Induced Ion Rearrangement in Acetonitrile-Water-Sodium Sulfate Solutions.

J Phys Chem B

September 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.

View Article and Find Full Text PDF

Background: The treatment of critically ill patients in intensive care units is becoming increasingly complex. For example, organ transplants are regularly carried out, the recipients are seriously ill, and the postoperative course can be complicated. This is why organ replacement and hemadsorption procedures are becoming increasingly important.

View Article and Find Full Text PDF

Recent Developments in Catalytic Asymmetric Aziridination.

Top Curr Chem (Cham)

September 2025

Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de La Universidad 7, 01006, Vitoria-Gasteiz, Spain.

Aziridines, structurally related to epoxides, are among the most challenging and fascinating heterocycles in organic chemistry due to their increasing applications in asymmetric synthesis, medicinal chemistry, and materials science. These three-membered nitrogen-containing rings serve as key intermediates in the synthesis of chiral amines, complex molecules, and pharmaceutically relevant compounds. This review provides an overview of recent progress in catalytic asymmetric aziridination, focusing on novel methodologies, an analysis of the scope and limitations of each approach, and mechanistic insights.

View Article and Find Full Text PDF

Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.

View Article and Find Full Text PDF

Integrins from extracellular vesicles as players in tumor microenvironment and metastasis.

Cancer Metastasis Rev

September 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.

Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.

View Article and Find Full Text PDF