98%
921
2 minutes
20
Background: IgA nephropathy is the most common form of glomerulonephritis and a leading cause of kidney failure. Ample evidence confirms the deposition of IgA and IgG, as well as the infiltration of mononuclear leukocytes in kidney biopsy specimens from IgA nephropathy patients. Previously, we established an experimental IgA nephropathy model in B cell-deficient mice, implicating interactions between Fcγ receptors (FcγRs) in the pathogenesis of IgA nephropathy. It is generally accepted that FcγRIIB plays a regulatory role in humoral responses; we proposed that FcγRIIB might exert differential kidney-protective effects depending on cell-type specificity, thereby influencing the progression and severity of IgA nephropathy.
Methods: Utilizing a mouse model of IgA nephropathy and three different cell types of FcγRIIB-deficient mice, including CEBP/α Cre (myeloid cells), CD11c Cre (dendritic cells) and CD19 Cre (B cells) in floxed FcγRIIB mice, as well as several specific cell models.
Results: In the present study, we observed a large increase in albuminuria, kidney function impairment, and kidney injury in FcγRIIB knockout mice with induced IgA nephropathy. We demonstrated that macrophage- and dendritic cell-specific FcγRIIB deficiency enhanced the activation of NLRP3 inflammasome and accelerated the development and severity of IgA nephropathy, whereas this effect was not observed in mice with B cell-specific FcγRIIB deficiency. Moreover, activation of the inflammasome was induced by IgA immune complexes dependent on TLR4/MyD88 signaling, potentially associated with crosstalk between Dectin-2.
Conclusions: We found that FcγRIIB deficiency in macrophages and dendritic cells led to increased albuminuria, kidney dysfunction, and kidney injury in a mouse model of IgA nephropathy. FcγRIIB deficiency enhanced activation of NLRP3 inflammasome through IgA immune complexes in a TLR4/MyD88-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1681/ASN.0000000835 | DOI Listing |
MedComm (2020)
September 2025
Immunoglobulin A nephropathy (IgAN), the most prevalent primary glomerulonephritis globally, is characterized by mesangial IgA deposition and heterogeneous clinical trajectories. Historically, management relied on renin-angiotensin system inhibition and empirical immunosuppression, yet high lifetime kidney failure risk persists despite optimized care. This review synthesizes advances in molecular pathogenesis, highlighting how the traditional multi-hit hypothesis-while foundational for targeted therapy development-fails to capture IgAN's recurrent, self-amplifying nature.
View Article and Find Full Text PDFClin Kidney J
September 2025
Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
Background: This study aimed to evaluate the efficacy and safety of telitacicept versus mycophenolate mofetil (MMF) in high-risk progressive immunoglobulin A nephropathy (IgAN).
Methods: This retrospective, multicentre cohort study included patients with high-risk progressive IgAN who received telitacicept or MMF therapy, both combined with low-dose steroids. Clinical data were collected from treatment initiation to 12 months.
Infect Drug Resist
September 2025
Department of Emergency, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China.
Introduction: Severe community-acquired pneumonia (SCAP) in immunocompromised patients is often caused by rare atypical pathogens, which are difficult to detect using conventional microbiological tests (CMTs) and can progress to sepsis in severe cases. Metagenomic next-generation sequencing (mNGS), an emerging pathogen detection technique, enables rapid identification of mixed infections and provides valuable guidance for clinical treatment decisions. SCAP-induced sepsis caused by a six-pathogen co-infection has not been previously reported, but interpretation remains a challenge.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Nephrology, National Clinical Key Specialty Construction Program (2023); Institute of Nephrology; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases; Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affil
Sodium-glucose cotransporter 2 inhibitors reduced proteinuria in patients with IgA nephropathy; however, their efficacy in patients at high risk of progression receiving immunosuppressive agents and renin angiotensin-aldosterone system inhibitors remains unclear. After 3 months of low-dose steroid alone or combined with mycophenolate mofetil, as well as renin angiotensin-aldosterone system inhibitors treatment, 105 biopsy-proven IgA nephropathy patients with proteinuria greater than 0.5 g/d were included in this study.
View Article and Find Full Text PDFClin J Am Soc Nephrol
September 2025
Kidney Division, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Kidney Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, China.
Background: The Therapeutic Effects of Steroids in IgA Nephropathy Global (TESTING) trial demonstrated that glucocorticoid therapy reduced proteinuria and improved kidney outcomes in patients with Immunoglobulin A Nephropathy (IgAN). Galactose-deficient IgA1 (Gd-IgA1) plays a central role in IgAN pathogenesis by promoting immune complex formation. However, the effects of glucocorticoid on pathogenic IgA levels remain unclear.
View Article and Find Full Text PDF