Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Germline Structural Variants (SVs) represent an important source of genetic diversity, in large part due to their influence on gene transcription. It is necessary to systematically catalog germline SVs and their associated impacted genes across different cohorts and tissue and cellular contexts, including pediatric brain or Central Nervous System (CNS) tumors.

Methods: We combined RNA with whole genome sequencing across 1430 pediatric brain or CNS tumor patients from the Children's Brain Tumor Network. We set out to systematically identify genes for which the proximity of germline SVs was recurrently and significantly associated with differential expression in the tumor sample across multiple patients.

Results: For hundreds of genes, recurrent and common germline SV breakpoints within 1 Mb were associated with higher or lower expression in tumors spanning various histologic types. Some germline SV-expression associations involved gene deletion or disruption, while others represented cis-regulatory alterations. Rare and singleton SVs disrupting DNA repair-related and mitochondrial-related genes collectively involved 2.7 and 4.7% of patients, respectively. Genes with germline SV breakpoint patterns and expression associated with patients of African ancestry included ACOT1 and CRYBB2P1. Genes with germline SV breakpoint patterns and expression associated with patient survival included ACTG1 and AHRR. Genes altered in association with both somatic and germline SVs included HGF and BCOR.

Conclusion: Our results capture a class of phenotypic variation at work in the setting of pediatric brain tumors, including genes with cancer roles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366115PMC
http://dx.doi.org/10.1186/s40478-025-02098-6DOI Listing

Publication Analysis

Top Keywords

pediatric brain
16
germline svs
12
germline
9
genes
9
germline structural
8
brain tumor
8
genes germline
8
germline breakpoint
8
breakpoint patterns
8
patterns expression
8

Similar Publications

Persisting Lyme Disease in the Pediatric Population.

Clin Pediatr (Phila)

September 2025

Department of Medicine (Infectious Disease), University of Connecticut Health Center, Boston University Medical Center, Falmouth Hospital, Falmouth, MA, USA.

A total of 101 patients with a clinical picture of persisting Lyme disease seen at the University of Connecticut Health Center and Boston Medical Center were recruited for the study to determine whether persistent infection is the likely cause. Brain SPECT imaging and responses to antibiotic treatments were recorded. Patients had more than 5 symptoms lasting more than 6 months.

View Article and Find Full Text PDF

Neural activity is increasingly recognized as a crucial regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth through paracrine mechanisms and by electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses. Outside of the central nervous system, innervation of tumours such as prostate, head and neck, breast, pancreatic, and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression.

View Article and Find Full Text PDF

Rare variants in , the gene encoding the GluA3 subunit of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs), are associated with defects in early brain development. Disease-causing variants are generally categorised as either loss of function (LoF) or gain of function (GoF) that appear to be linked to different symptoms. Here, we reported a de novo variant (N651D) that has mixed LoF and GoF in a female patient with a devastating developmental and epileptic encephalopathy, parkinsonism and cortical malformation.

View Article and Find Full Text PDF

Background: Prenatal alcohol exposure (PAE) causes fetal alcohol spectrum disorder (FASD) and is associated with various cognitive and sensory impairments, including olfactory dysfunction. While both genetic and environmental factors contribute to olfactory dysfunction, PAE is considered a significant factor affecting brain development, including the olfactory system. In this study, we investigated the impact of PAE on the developing olfactory bulb (OB), specifically focusing on OB RGCs-radial glial cells that give rise to OB projection neurons.

View Article and Find Full Text PDF