98%
921
2 minutes
20
The prompt diagnosis of pulmonary infections with unknown etiology in patients in severe condition remains a challenge due to the lack of rapid and effective diagnostic methods. While metatranscriptomic sequencing offers a powerful approach, its clinical utility is often limited by issues of timeliness. In this study, we conducted metatranscriptomic sequencing on bronchoalveolar lavage fluid (BALF) collected from critically ill, severely ill, and ICU patients. Based on microbial detection results, patients were classified into four types: negative, bacterial infection, viral infection, and fungal infection. To identify host gene expression signatures associated with infection, we screened characteristic genes from human metatranscriptomic data by comparing 70% of patients with confirmed infections vs. non-infections. Leveraging these characteristic genes, we constructed classification sub-models employing 13 types of machine learning algorithms, and we further integrated these sub-models into stacking-based ensemble models with Lasso regression, resulting in diagnostic models that required only a small set of gene expression inputs. The average performance of five-fold cross-validation demonstrated high diagnostic accuracy: distinguishing infection from non-infection (AUC = 0.984), bacterial infection from non-bacterial infection (AUC = 0.98), and viral infection from non- viral infection (AUC = 0.98). Test cohorts' results demonstrated the method's high diagnostic accuracy consistency with metatranscriptomic sequencing in discerning patient infection status (AUC = 0.865) and the type of infection (viral: AUC = 0.934, bacterial: AUC = 0.871). Our study presented a rapid and inexpensive adjunctive diagnostic strategy that achieves diagnostic accuracy comparable to metatranscriptomic sequencing, enabling timely identification of both infection status and type in pulmonary infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12368225 | PMC |
http://dx.doi.org/10.1038/s41598-025-15914-9 | DOI Listing |
NPJ Biofilms Microbiomes
September 2025
Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel University, Kiel, Schleswig-Holstein, Germany.
Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI.
View Article and Find Full Text PDFmSystems
September 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
Livestock-associated methicillin-resistant (LA-MRSA) displays distinct geographical distribution patterns, with ST398 predominating in Europe and ST9 being the dominant lineage in Asia, particularly China. However, the mechanisms underlying these differences remain poorly understood. In this study, we evaluated the cell adhesion capacity, anti-phagocytic properties, and porcine nasal colonization potential of ST9 and ST398 strains isolated from China and Germany.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America.
Metatranscriptome sequencing has emerged as a powerful tool for uncovering viral diversity in insects and their associated microbes. To explore viruses linked to the pea aphid (Acyrthosiphon pisum), we performed metatranscriptome sequencing on field-collected samples. In addition to several known plant viruses, we assembled the genome of a new virus homologous to species in the family Mitoviridae, which are positive-sense single-stranded RNA viruses that encode only an RNA-dependent RNA polymerase and typically replicate in mitochondria.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Guayaquil, Ecuador.
Next-generation sequencing (NGS) has revolutionized food science, offering unprecedented insights into microbial communities, food safety, fermentation, and product authenticity. NGS techniques, including metagenetics, metagenomics, and metatranscriptomics, enable culture-independent pathogen detection, antimicrobial resistance surveillance, and detailed microbial profiling, significantly improving food safety monitoring and outbreak prevention. In food fermentation, NGS has enhanced our understanding of microbial interactions, flavor formation, and metabolic pathways, contributing to optimized starter cultures and improved product quality.
View Article and Find Full Text PDFBiophys Physicobiol
July 2025
The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
Chrimson is cation-conducting channelrhodopsin (CCR) with the most red-shifted absorption spectrum, rendering itself as one of the most promising optogenetic tools. However, the molecular mechanisms underlying its red-shifted absorption have not been completely clarified yet. Here, we found a CCR gene showing high sequence similarity to Chrimson from Lake Hula through freshwater metatranscriptome sampling.
View Article and Find Full Text PDF