Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tissue engineering in dentistry is revolutionizing the regeneration of dental pulp. The dental pulp is a specialized connective tissue that plays an important role in maintaining tooth health and supporting healing processes. However, exposure of the pulp to harmful factors, such as infections or trauma, can negatively impact its function, leading to inflammation, tissue necrosis, and ultimately pulp loss. As a solution to these challenges, tissue-engineered vital pulp therapies (VPTs) are emerging as an alternative to conventional root canal treatments. These therapies aim to preserve the vitality of the pulp, stimulate natural healing processes, and restore the dentin-pulp structure. Regenerative dentistry is also exploring tissue repair through innovations such as three-dimensional (3D) bioprinting, exosome-based therapies, and novel scaffold structures.This chapter explores the potential of tissue engineering in dental pulp regeneration, focusing on the role of stem cells, growth factors, scaffolds, and bioactive materials. In particular, stem cells derived from dental pulp are critical to this process due to their ability to differentiate into odontoblast-like cells and promote dentin production. The combination of these stem cells with bioactive scaffolds that release growth factors can significantly enhance the healing of pulp tissue. Furthermore, innovative materials, such as calcium silicate-based materials and bioactive glasses, have shown promising results in pulp regeneration and restorative dentin formation. While the future of these therapies is promising, challenges such as clinical application, long-term efficacy, and cost-effectiveness remain. As research advances, the importance of interdisciplinary collaboration and clinical trials will grow in overcoming these barriers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/5584_2025_876DOI Listing

Publication Analysis

Top Keywords

dental pulp
16
stem cells
12
pulp
10
regenerative dentistry
8
bioactive materials
8
tissue engineering
8
healing processes
8
pulp regeneration
8
growth factors
8
tissue
6

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

The Relationship Between Pulpal Diagnostic Conditions and Potential Inflammatory Biomarkers.

Int Endod J

September 2025

Department of Endodontics, Advanced Educational Program in Endodontics, Health Information and Business Systems (HIBS), School of Dentistry, UAB|the University of Alabama at Birmingham, Birmingham, Alabama, USA.

Introduction: Accurate diagnosis of pulpal health is crucial to identify the most effective therapeutic approach. However, differentiating pulpal conditions, which may require different treatment approaches, remains a challenge. This study aimed to address this gap by investigating the protein levels of 17 inflammatory biomarkers simultaneously in the dental pulp with different clinical diagnoses.

View Article and Find Full Text PDF

Effect of Oral Pathogens Associated With Pulpitis and Apical Periodontitis on Odontogenic Mesenchymal Stem Cells.

Stem Cells Int

August 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials

Dental mesenchymal stem cells (MSCs) play an essential role in the development of immature permanent teeth. Bacterial infection of the pulp and periapical tissues of immature permanent teeth, the associated oral pathogens, and their virulence factors affect the viability, proliferation, differentiation, and cytokine secretion of MSCs. Bacteria and virulence factors can also trigger an inflammatory response that induces pro-inflammatory cytokine secretion and destroys odontogenic MSCs in the pulp and periapical region, negatively affecting the development of immature permanent teeth.

View Article and Find Full Text PDF

TP53TG1 is a long non-coding RNA related to the TP53 gene, which plays an important role in various biological processes such as tumorigenesis, cell cycle regulation, and DNA damage repair. In recent years, researchers have begun to explore the role of TP53TG1 in dental pulp biology, especially its potential impact on pulpitis and other pulp-related diseases. However, the role of TP53TG1 in human dental pulp stem cells (hDPSCs) remains unclear.

View Article and Find Full Text PDF

Introduction: Pulse oximetry exhibits great potential for use in endodontic diagnosis as an effective method to assess pulp vitality. Cell phone-integrated oximeters represent an emerging alternative that may offer greater accessibility. This study aimed to investigate the relation between pulp oxygenation rates (%SpO) and clinical diagnosis of healthy pulp (HP), reversible pulpitis (RP), symptomatic irreversible pulpitis (IP), or pulp necrosis (PN), comparing two pulse oximeters (conventional and mobile-connected).

View Article and Find Full Text PDF