Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Successful cancer immunotherapy requires novel approaches that overcome intratumoral immunosuppression and peripheral tolerance. In a recent manuscript describing intravenously administered mRNA-loaded lipid particle aggregates (RNA-LPAs), we demonstrate the ability to reprogram both the tumor microenvironment and periphery enabling cancer-specific immunity simultaneously generated to compete against immunologically 'cold' malignancies like glioblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366804PMC
http://dx.doi.org/10.1080/21645515.2025.2543599DOI Listing

Publication Analysis

Top Keywords

systemic mrna
4
mrna aggregates
4
aggregates elicit
4
elicit immunologic
4
immunologic reprogramming
4
reprogramming unlocks
4
unlocks anti-cancer
4
anti-cancer immunity
4
immunity successful
4
successful cancer
4

Similar Publications

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

Therapeutic oligonucleotides (TOs) represent an emerging modality, which offers a promising alternative treatment option, particularly for intracellular targets. The two types of TOs, antisense oligonucleotides (ASO) and small interfering RNAs (siRNAs), distribute highly into tissues, especially into the liver and the kidneys. However, molecular processes at the cellular level such as the uptake into the cell, endosomal escape, binding to the target mRNA, and redistribution back to the systemic circulation are not well characterized because experimental data and assays are lacking.

View Article and Find Full Text PDF

Supervised exercise therapy (SET) is a first-line treatment for patients with symptomatic peripheral artery disease (PAD). However, its impact on inflammation, as well as the relationship between inflammation and functional improvements, remain poorly understood. In this prospective, single-arm study, 51 patients with symptomatic PAD underwent a 12-week multimodal SET program.

View Article and Find Full Text PDF

Severe burns are a major global health concern, and are associated with long-term physical and psychological impairments, multi-organ dysfunction, and substantial morbidity and mortality. While burn injuries in adults trigger systemic immuno-metabolic alterations-characterized by white adipose tissue browning, elevated resting energy expenditure, widespread catabolism, and inflammation-these adaptive responses are considerably impaired in older adults, with molecular mechanisms behind these differences remaining largely unclear. As a key regulator of systemic metabolism, investigating the pathological role of adipose tissue (AT) postburn may reveal novel targets that could potentially improve patient outcomes.

View Article and Find Full Text PDF

The oral epithelial barrier plays a crucial role in maintaining oral health by protecting against microbial invasion and mechanical stress while regulating selective permeability. Disruption of this barrier contributes to inflammation and the development of oral diseases such as gingivitis and periodontitis. Pinoresinol, a lignan with antioxidant, antimicrobial, and anti-inflammatory properties, has demonstrated health benefits in systemic diseases; however, its effects on oral epithelial barrier integrity remain unclear.

View Article and Find Full Text PDF