98%
921
2 minutes
20
AP1/FUL-clade transcription factors (TFs) are essential for the initiation and regulation of flowering and have clearly separated functions in Arabidopsis. However, how these functions have diverged across eudicots remains unclear. Here, we performed a detailed analysis to unravel the distinct and overlapping functions of the tomato AP1-ortholog MACROCALYX (MC) and the FUL-like genes FRUITFULL2 (FUL2) and MADS-BOX PROTEIN 20 (MBP20) through integrated molecular, genetic, and genomic approaches. We find that AP1/FUL-like TFs redundantly regulate the floral transition in both the primary shoot and sympodial shoot. In the latter, loss of MC, FUL2, and MBP20 leads to extremely delayed flowering. In the floral and inflorescence meristem, MC is the major player, but FUL2 and MBP20 contribute as well, with a complete loss of reproductive identity in the inflorescence meristem of the triple mutant. The functional differences between the three genes can mainly be attributed to differences in expression level, as the DNA-binding properties of MC and FUL2 are highly similar. Only the TFL1-ortholog SP appears specifically regulated by MC. We reveal that the combined action of AP1/FUL-clade TFs is needed to acquire and retain reproductive activity in tomato, which is probably conserved in many other crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.70451 | DOI Listing |
Cell Biochem Biophys
September 2025
Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.
Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2025
School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.
Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.
View Article and Find Full Text PDFHum Brain Mapp
September 2025
Department of Neuropediatrics, General Pediatrics, Diabetology, Endocrinology, Social Pediatrics, University Children's Hospital, Tübingen, Germany.
Subject motion is a significant problem for the analysis of functional MRI data and is usually described by "total displacement" or "scan-to-scan displacement". Neither parameter, however, takes into account voxel size, which clearly is relevant for the actual effects of motion on the data. Consequently, it is hitherto impossible to compare motion between subjects/studies acquired using different voxel dimensions, precluding the development of generally applicable recommendations for fMRI quality control procedures.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
The University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester, United Kingdom.
Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.
Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.
Ecol Lett
September 2025
Department of Biology, University of Florida, Gainesville, Florida, USA.
Animal migration remains poorly understood for many organisms, impeding understanding of movement dynamics and limiting conservation actions. We develop a framework that scales from movements of individuals to the dynamics of continental migration using data synthesis of endogenous markers, which we apply to three North American bat species with unexplained high rates of fatalities at wind energy facilities. The two species experiencing the highest fatality rates exhibit a "pell-mell" migration strategy in which individuals move from summer habitats in multiple directions, both to higher and lower latitudes, during autumn.
View Article and Find Full Text PDF