Working in negative space: Type I interferon mediated immuno-modulation through transcriptional suppression in disease and homeostasis.

Innate Immun

Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The type I interferon family of cytokines are rapidly produced following innate pattern recognition receptor engagement and establish a critical early state of host defense. Type I interferons act in antiviral immunity as transcriptional activators and the binding of any type I interferon to the common IFNAR receptor triggers the transcription of nterferon timulated enes (ISGs). A defined set of ISGs have been described through exhaustive studies and the protein products of these ISGs function to increase cell intrinsic resistance to viral growth and to promote viral clearance. Simultaneously, interferons also drive a much less well studied program of transcriptional suppression, inhibiting the expression of an unknown number of genes, with poorly understood consequences for disease. The limited number of genes currently known to be transcriptionally suppressed by IFN are enriched for those with immune-mediating activities such as inflammatory cytokines (e.g., IL-1β), cytokine receptors (e.g., IFNγR) and chemokines. Interferon dependent transcriptional suppression of immune response genes is therefore thought to underlie the immune suppression associated with interferon production during many bacterial infections (e.g., mycobacterium tuberculosis and listeria monocytogenes) and may also explain the palliative effects of interferons in some autoimmune diseases. Despite the health relevance of IFN driven transcriptional suppression, no consensus molecular model exists to explain its selectivity or regulation. In this review we highlight the current literature detailing the known targets of IFN transcriptional suppression within the various disease models in which it has been observed. We also review the relevant molecular mechanisms which have been proposed to explain transcriptional suppression by interferons and discuss the remaining open questions in this field with an ambition to stimulate future work in this area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365442PMC
http://dx.doi.org/10.1177/17534259251367263DOI Listing

Publication Analysis

Top Keywords

transcriptional suppression
24
type interferon
12
suppression disease
8
number genes
8
transcriptional
7
suppression
7
interferon
5
working negative
4
negative space
4
type
4

Similar Publications

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF

Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression, yet their contribution to chemoimmunotherapy resistance remains poorly understood. Here, we identified the transcription factor ZEB1 as a critical driver of chemoimmunotherapy resistance in PC.

View Article and Find Full Text PDF

Stress-induced organismal death is genetically regulated by the mTOR-Zeste-Phae1 axis.

Proc Natl Acad Sci U S A

September 2025

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.

All organisms are exposed to various stressors, which can sometimes lead to organismal death, depending on their intensity. While stress-induced organismal death has been observed in many species, the underlying mechanisms remain unclear. In this study, we investigated the molecular mechanisms of stress-induced organismal death in the fruit fly .

View Article and Find Full Text PDF

S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation.

In Vitro Cell Dev Biol Anim

September 2025

Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.

S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. The tumor microenvironment (TME), particularly the interactions between endothelial cells and cancer-associated fibroblasts (CAFs), plays a pivotal role in promoting tumor growth, angiogenesis, oxidative stress, and therapy resistance. The HUVEC-fibroblast co-culture model closely mimics stromal-endothelial interactions observed in CRC, enabling mechanistic insights not achievable in monocultures.

View Article and Find Full Text PDF