98%
921
2 minutes
20
Background: Accurate segmentation of lung cancer lesions in computed tomography (CT) is essential for precise diagnosis, personalized therapy planning, and treatment response assessment. While automatic segmentation of the primary lung lesion has been widely studied, the ability to segment multiple lesions per patient remains underexplored. In this study, we address this gap by introducing a novel, automated approach for multi-instance segmentation of lung cancer lesions, leveraging a heterogeneous cohort with real-world multicenter data.
Materials And Methods: We analyzed 1,081 retrospectively collected CT scans with 5,322 annotated lesions (4.92 ± 13.05 lesions per scan). The cohort was stratified into training (n = 868) and testing (n = 213) subsets. We developed an automated three-step pipeline, including thoracic bounding box extraction, multi-instance lesion segmentation, and false positive reduction via a novel multiscale cascade classifier to filter spurious and non-lesion candidates.
Results: On the independent test set, our method achieved a Dice similarity coefficient of 76% for segmentation and a lesion detection sensitivity of 85%. When evaluated on an external dataset of 188 real-world cases, it achieved a Dice similarity coefficient of 73%, and a lesion detection sensitivity of 85%.
Conclusion: Our approach accurately detected and segmented multiple lung cancer lesions per patient on CT scans, demonstrating robustness across an independent test set and an external real-world dataset.
Relevance Statement: AI-driven segmentation comprehensively captures lesion burden, enhancing lung cancer assessment and disease monitoring KEY POINTS: Automatic multi-instance lung cancer lesion segmentation is underexplored yet crucial for disease assessment. Developed a deep learning-based segmentation pipeline trained on multi-center real-world data, which reached 85% sensitivity at external validation. Thoracic bounding box and false positive reduction techniques improved the pipeline's segmentation performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361585 | PMC |
http://dx.doi.org/10.1186/s41747-025-00617-7 | DOI Listing |
Biochem Soc Trans
September 2025
Department of Biochemistry, McGill University, Montréal, QC, Canada.
The MET receptor tyrosine kinase is a pivotal regulator of cellular survival, motility, and proliferation. Mutations leading to skipping of exon 14 (METΔex14) within the juxtamembrane domain of MET impair receptor degradation and prolong oncogenic signaling, contributing significantly to tumor progression across multiple cancer types. METΔex14 mutations are associated with aggressive clinical behavior, therapeutic resistance, and poor outcomes.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFPLoS One
September 2025
Biobank of Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Korea.
Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.
Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.
Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.