98%
921
2 minutes
20
Achieving structural novelty in drug discovery remains a critical challenge. Artificial intelligence (AI) has demonstrated remarkable potential in deciphering the complex relationships between molecular structures and activities from vast amounts of chemical and biological information. However, its ability to explore novel chemical spaces is underexplored. This study evaluates the structural novelty of AI-designed active compounds across 71 cases published in recent years. Ligand-based models often yield molecules with relatively low novelty (Tc > 0.4 in 58.1% of cases), whereas structure-based approaches exhibit better performance (17.9% with Tc > 0.4). Screening workflows significantly influence the novelty, with underexplored targets benefiting from structure-based methods. However, fingerprint-based similarity metrics may fail to detect scaffold-level similarities. Systematic novelty assessment and manual verification are essential to avoid structural homogenization. This Review provides insights for optimizing AI-driven drug discovery and underscores the need for interdisciplinary collaboration to balance novelty and activity. Specifically, we recommend the use of diverse training data sets, scaffold-hopping aware similarity metrics, and careful consideration of similarity filters in AI-driven drug discovery workflows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.5c00921 | DOI Listing |
Comput Biol Chem
August 2025
Department of Green Chemistry, National Research Centre, Dokki, P.O. Box 12622, Cairo, Egypt. Electronic address:
This review meticulously examines the development, design, and pharmacological assessment of both well known antiviral and antihypertensive medications all time employing new chemical techniques and structure-based drug design to design and synthesize vital therapeutic entities such as aliskiren (renin inhibitor), captopril (a2-ACE-Inhibitor), dorzolamide (inhibitor of carbonic anhydrase) the review demonstrates initial steps regarding the significance of stereoselective synthesis, metal chelating pharmacophores, and rational molecular properties. More importantly, protease inhibitors (i.e.
View Article and Find Full Text PDFBrief Bioinform
September 2025
Department of Computer Science, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.
Motivation: Mobile genetic elements (MGEs) play an important role in facilitating the acquisition of antibiotic resistance genes (ARGs) within microbial communities, significantly impacting the evolution of antibiotic resistance. Understanding the mechanism and trajectory of ARG acquisition requires a comprehensive analysis of the ARG-carrying mobilome-a collective set of MGEs carrying ARGs. However, identifying the mobilome within complex microbiomes poses considerable challenges.
View Article and Find Full Text PDFChemistryOpen
September 2025
Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
G protein-coupled receptor family C, group 5, member D (GPRC5D), a member of the G protein-coupled receptor (GPCR) family, has recently emerged as a promising target for immunotherapy in hematologic malignancies, particularly multiple myeloma. However, no systematic virtual screening studies have been conducted to identify small-molecule inhibitors targeting GPRC5D. To address this gap, a multistep computational screening strategy is developed that integrates Protein-Ligand Affinity prediction NETwork (PLANET), a GPU-accelerated version of AutoDock Vina (Vina-GPU), molecular mechanics/generalized born surface area (MM/GBSA), and an online tool for Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) property prediction (admetSAR 3.
View Article and Find Full Text PDFMol Pharm
September 2025
Johnson & Johnson, Translational PK/PD & Investigational Toxicology, Spring House, Pennsylvania 19002, United States.
Human intestinal permeability is a key determinant of the oral fraction absorbed () of active pharmaceutical ingredients (APIs). This study evaluated the ability of an in-house canine Mdr1 (cMdr1) knockout (KO) Madin-Darby Canine Kidney (MDCK) cell line to correlate apparent permeability () with human small intestinal permeability (). values of 16 reference compounds with high, medium, or low permeabilities were measured in the in-house cMdr1 KO MDCK protocol under pH gradient (6.
View Article and Find Full Text PDFDrug Deliv Transl Res
September 2025
Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India.
Diabetes is a metabolic disorder of increasing global concern. Characterized by constantly elevated levels of glucose, severe β-cell dysfunction, and insulin resistance, it is the cause of a major burden on patients if not managed with therapeutic and lifestyle changes. The human body is slowly developing tolerance to many marketed antidiabetic drugs and the quest for the discovery of newer molecules continues.
View Article and Find Full Text PDF