C-net: Cross-organ cross-modality cswin-transformer coupled convolutional network for dual task transfer learning in lymph node segmentation and classification.

Comput Med Imaging Graph

The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep learning has made notable strides in the ultrasonic diagnosis of lymph nodes, yet it faces three primary challenges: a limited number of lymph node images and a scarcity of annotated data; difficulty in comprehensively learning both local and global semantic information; and obstacles in collaborative learning for both image segmentation and classification to achieve accurate diagnosis. To address these issues, we propose the Cross-organ Cross-modality Cswin-transformer Coupled Convolutional Network (C-Net). First, we design a cross-organ and cross-modality transfer learning strategy to leverage skin lesion dermoscopic images, which have abundant annotations and share similarities in fields of view and morphology with the lymph node ultrasound images. Second, we couple Transformer and convolutional network to comprehensively learn both local details and global information. Third, the encoder weights in the C-Net are shared between segmentation and classification tasks to exploit the synergistic knowledge, enhancing overall performance in ultrasound lymph node diagnosis. Our study leverages 690 lymph node ultrasound images and 1000 skin lesion dermoscopic images. Experimental results show that our C-Net achieves the best segmentation and classification performance for lymph nodes among advanced methods, with the Dice coefficient of segmentation equaling 0.854, and the accuracy of classification equaling 0.874. Our method has consistently shown accuracy and robustness in the segmentation and classification of lymph nodes, contributing to the early and accurate detection of lymph nodal malignancy, which is potentially essential for effective treatment planning in clinical oncology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2025.102633DOI Listing

Publication Analysis

Top Keywords

lymph node
20
segmentation classification
20
cross-organ cross-modality
12
convolutional network
12
lymph nodes
12
lymph
9
cross-modality cswin-transformer
8
cswin-transformer coupled
8
coupled convolutional
8
transfer learning
8

Similar Publications

Lymph node with central hypodensity.

J Bras Pneumol

September 2025

. Universidade Federal do Rio de Janeiro, Rio de Janeiro (RJ) Brasil.

View Article and Find Full Text PDF

Nonsmall cell lung cancer (NSCLC) with SMARCA4 deficiency represents a rare subset of lung tumors characterized by early metastasis, poor response to chemotherapy, and unfavorable prognosis. Established therapy strategies for SMARCA4-deficient NSCLC remain elusive. While immune checkpoint inhibitors have been proposed as a potential solution, their efficacy remains uncertain.

View Article and Find Full Text PDF

Objective: This study aims to systematically evaluate the inter- and intra-observer agreement regarding lesions with uncertain malignancy potential in Ga-68 PSMA PET/CT imaging of prostate cancer patients, utilizing the PSMA-RADS 2.0 classification system, and to emphasize the malignancy evidence associated with these lesions.

Methods: We retrospectively reviewed Ga-68 PSMA PET/CT images of patients diagnosed with prostate cancer via histopathology between December 2016 and November 2023.

View Article and Find Full Text PDF

Background: The optimal number of examined lymph nodes (ELN) for accurate staging and prognosis for esophageal cancer patients receiving neoadjuvant therapy remains controversial. This study aimed to evaluate the impact of ELN count on pathologic staging and survival outcomes and to develop a predictive model for lymph node positivity in this patient population.

Methods: Data were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and a multicenter cohort.

View Article and Find Full Text PDF