98%
921
2 minutes
20
Deep learning has made notable strides in the ultrasonic diagnosis of lymph nodes, yet it faces three primary challenges: a limited number of lymph node images and a scarcity of annotated data; difficulty in comprehensively learning both local and global semantic information; and obstacles in collaborative learning for both image segmentation and classification to achieve accurate diagnosis. To address these issues, we propose the Cross-organ Cross-modality Cswin-transformer Coupled Convolutional Network (C-Net). First, we design a cross-organ and cross-modality transfer learning strategy to leverage skin lesion dermoscopic images, which have abundant annotations and share similarities in fields of view and morphology with the lymph node ultrasound images. Second, we couple Transformer and convolutional network to comprehensively learn both local details and global information. Third, the encoder weights in the C-Net are shared between segmentation and classification tasks to exploit the synergistic knowledge, enhancing overall performance in ultrasound lymph node diagnosis. Our study leverages 690 lymph node ultrasound images and 1000 skin lesion dermoscopic images. Experimental results show that our C-Net achieves the best segmentation and classification performance for lymph nodes among advanced methods, with the Dice coefficient of segmentation equaling 0.854, and the accuracy of classification equaling 0.874. Our method has consistently shown accuracy and robustness in the segmentation and classification of lymph nodes, contributing to the early and accurate detection of lymph nodal malignancy, which is potentially essential for effective treatment planning in clinical oncology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2025.102633 | DOI Listing |
J Bras Pneumol
September 2025
. Universidade Federal do Rio de Janeiro, Rio de Janeiro (RJ) Brasil.
Anticancer Drugs
September 2025
Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.
Nonsmall cell lung cancer (NSCLC) with SMARCA4 deficiency represents a rare subset of lung tumors characterized by early metastasis, poor response to chemotherapy, and unfavorable prognosis. Established therapy strategies for SMARCA4-deficient NSCLC remain elusive. While immune checkpoint inhibitors have been proposed as a potential solution, their efficacy remains uncertain.
View Article and Find Full Text PDFInt J Surg
September 2025
Guangxi Medical University, Nanning, Guangxi, China.
Ann Nucl Med
September 2025
Department of Nuclear Medicine, Marmara University School of Medicine, Istanbul, Turkey.
Objective: This study aims to systematically evaluate the inter- and intra-observer agreement regarding lesions with uncertain malignancy potential in Ga-68 PSMA PET/CT imaging of prostate cancer patients, utilizing the PSMA-RADS 2.0 classification system, and to emphasize the malignancy evidence associated with these lesions.
Methods: We retrospectively reviewed Ga-68 PSMA PET/CT images of patients diagnosed with prostate cancer via histopathology between December 2016 and November 2023.
Ann Surg Oncol
September 2025
Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
Background: The optimal number of examined lymph nodes (ELN) for accurate staging and prognosis for esophageal cancer patients receiving neoadjuvant therapy remains controversial. This study aimed to evaluate the impact of ELN count on pathologic staging and survival outcomes and to develop a predictive model for lymph node positivity in this patient population.
Methods: Data were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and a multicenter cohort.