98%
921
2 minutes
20
Wound infections caused by bacterial overgrowth can delay wound healing and burden patients heavily. Bacterial cellulose (BC) is a desirable material for wound healing, but it is expensive to produce and lacks antibacterial properties. In this study, we present an innovative and effective strategy to prepare BC-Cot using hydrolysate from cotton fabrics. After combining with an antimicrobial peptide (AMPs) inspired by sea cucumber lectin to make a multifunctional wound dressing. After systematically optimizing the processes of cotton fabric hydrolysis and BC preparation, BC-Cot displayed comparable production yields and finer fiber diameter than BC prepared from glucose. The Schiff base reaction enables material modification under mild conditions without any promoter, simplifying the preparation process and avoiding toxic reagents. A dialdehyde BC (DBC) was obtained after oxidation of BC-Cot. By grafting the peptides onto DBC via Schiff base reaction, we obtained a multifunctional wound dressing (DBCP). It exhibited significant antimicrobial activity and greatly accelerated the healing of infected wounds. Additionally, DBCP has strong adhesive properties that can quickly stop wound bleeding. The wound tissues showed a reduced number of inflammatory cells, newly formed hair follicles, and obvious collagen deposition. This research provides the possibility for waste cotton fabric recycling and presents an effective wound dressing for promoting wound hemostasis and healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.146850 | DOI Listing |
Int J Biol Macromol
September 2025
Marine College, Shandong University, Weihai, 264209, China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 265599, China. Electronic address:
The treatment of chronic hard-to-heal wounds has become a major medical and public health problem worldwide. The search for novel and efficient wound healing dressings is crucial because of the complex mechanisms of wound genesis and of the inability to spontaneously repair. Many inherent properties of organisms in nature and their intrinsic molecular mechanisms have inspired researchers to design biomimetic hydrogel wound dressings to treat chronic hard-to-heal wounds.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:
The emergence of antimicrobial resistance poses significant challenges in conventional antibiotic treatments for chronic wound infections, highlighting an urgent need for alternative therapeutic strategies. To address this issue, we developed a multifunctional electrospun nanofiber dressing co-loaded with anthocyanin (ATH) and asiaticoside (AS) that possesses antimicrobial activity. The tri-layer dressing contains three functional components: a hydrophilic polyacrylonitrile-anthocyanin (PAN-ATH) layer for pH monitoring, a hydrophobic polycaprolactone (PCL) layer for exudate management, and a water-soluble pullulan-Bletilla striata polysaccharide-asiaticoside (PUL-BSP-AS) layer.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Ethnic Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China. Electronic address:
Wound healing is often hindered by bacterial infection, oxidative stress, and bleeding. Traditional dressings cannot simultaneously regulate multiple microenvironments. To address the shortcomings of traditional dressings, this study constructed a dual-network photothermal responsive multifunctional hydrogel OBCTCu based on four natural ingredients, including Bletilla striata polysaccharide (BSP), chitosan (CS), tannic acid (TA), and Cu.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China. Electronic address:
Constructing a novel antibacterial platform is of great significance for inhibiting bacterial infections. In this work, we developed a composite hydrogel (CS/PPy/PDA hydrogel) by incorporating photothermal material polypyrrole (PPy), chitosan (CS) and polydopamine (PDA) into poly acrylamide (PAAM) hydrogel network. First, CS/PPy/PDA hydrogel could capture bacteria through strong electrostatic interactions, enhancing the contact between hydrogels and bacteria.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China. Electronic address:
Conventional wound dressings primarily focus on biochemical regulation, often neglecting the potential benefits of mechanical cues in tissue regeneration. We report a Janus hydrogel (QPJ hydrogel) that synergistically integrates biochemical modulation with temperature-responsive mechanical contraction for advanced chronic wound management. The hydrogel is constructed from quaternary ammonium chitosan (QCS) and N-isopropylacrylamide (NIPAM), with an outer PNIPAM layer that generates a directional contractile stress >25 kPa at physiological temperature.
View Article and Find Full Text PDF