Comparative pan-genome analysis of Huperzia and Phlegmariurus and transcriptomics reveals thermal adaptation in Huperzia.

Funct Integr Genomics

Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Huperzia and Phlegmariurus are ancient genera within the Lycopodiaceae family with significant medicinal value and ecological adaptability, yet the evolutionary dynamics and genetic diversity of their chloroplast genomes remain poorly characterized. Specifically, critical aspects such as intergeneric differences, phylogenetic relationships, and adaptive evolution within their chloroplast genomes remain insufficiently explored. This study analyzed the chloroplast genomes of 66 species from these two genera through comparative genomics to elucidate their structural dynamics and adaptive mechanisms. Results revealed that Huperzia chloroplast genomes (153-155 kb, GC content 36.25-36.39%) are significantly larger than those of Phlegmariurus (148-151 kb, GC content 33.78-34.26%), with pronounced differences in IR boundary dynamics, repetitive sequence distribution, nucleotide diversity, and codon usage bias. Phylogenetic and population structure analyses confirmed the monophyly of both genera and demonstrated significantly higher genetic diversity in Phlegmariurus, likely linked to adaptive radiation driven by humid tropical environments. Transcriptomic data revealed a temporally coordinated chloroplast response to heat stress in Huperzia serrata. Photosynthetic core genes (such as psaB and rrna16) were downregulated, leading to sustained functional impairment. In contrast, early stress-response genes (such as rbcL and trnI-GAU) peaked at 4 h to enhance carbon fixation and transport. Mid-phase repair genes (such as ndhG and rps8) exhibited inverted U-shaped expression patterns to activate electron transport and protein synthesis, whereas late-stage overexpression of atpI restored energy homeostasis. This coordinated regulatory mechanism illustrates a survival strategy of "photosynthetic inhibition-stress compensation-energy reorganization" for thermal adaptation. Future studies should integrate nuclear genome and epigenetic modification data to further unravel the synergistic nucleo-cytoplasmic interactions underlying environmental adaptation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10142-025-01680-4DOI Listing

Publication Analysis

Top Keywords

chloroplast genomes
16
huperzia phlegmariurus
8
thermal adaptation
8
genetic diversity
8
genomes remain
8
huperzia
5
chloroplast
5
comparative pan-genome
4
pan-genome analysis
4
analysis huperzia
4

Similar Publications

Linnaeus 1753 is a herbaceous perennial medicinal plant of the family Scrophulariaceae, native throughout eastern and central North America. In this study, the first complete chloroplast genome of was reported and phylogenetic analysis was conducted with other 11 species from Scrophulariaceae. The chloroplast genome was 152,414 bp with 132 genes and includes a large single-copy (LSC) region (83,583 bp), a small single-copy (SSC) region (17,925 bp), and a pair of inverted repeat (IRs) regions (25,453 bp).

View Article and Find Full Text PDF

Comprehensive sampling from mitochondrial genomes substantiates the Neoproterozoic origin of land plants.

Plant Commun

September 2025

College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Molecular phylogenetics illustrates the evolution and divergence of green plants by employing sequence data from various sources. Interestingly, phylogenetic reconstruction based on mitochondrial genes tends to exhibit incongruence with those derived from nuclear and chloroplast genes. Although the uniparental inheritance and conservatively retained protein-coding genes of mitochondrial genomes inherently exclude certain potential factors that affect phylogenetic reconstruction, such as hybridization and gene loss, the utilization of mitochondrial genomes for phylogeny and divergence time estimation remains limited.

View Article and Find Full Text PDF

The complete chloroplast genome of Franch. & Sav. and its phylogenetic analysis.

Mitochondrial DNA B Resour

September 2025

Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.

Here, we present the first complete chloroplast genome of (154,018 bp), which exhibits a typical quadripartite structure, including an LSC (83,966 bp), SSC (18,910 bp), and two IRs (25,571 bp each). A total of 133 genes were annotated, with 114 unique genes and 19 duplicated in the IRs. .

View Article and Find Full Text PDF

The complete chloroplast genome of L. and its phylogenetic analysis.

Mitochondrial DNA B Resour

September 2025

Heze Municipal Bureau of Agriculture and Rural Affairs, Heze, P. R. China.

L. 1753 is a perennial herb of the family Asteraceae, often cultivated as an ornamental flower. The species has also been reported to contain a wide range of phytochemicals and to exhibit diverse pharmacological activities.

View Article and Find Full Text PDF

Plant mitochondrial genomes are characterized by their complex compositions and structures, large genomes, rapid recombination and evolution rates, and frequent intracellular gene transfer events. Centipedegrass, known as "Chinese turfgrass", is a warm-season turfgrass that exhibits excellent tolerance to both biotic and abiotic stresses. The chloroplast genome, with 139,107 bp, and the mitochondrial genome, with 564,432 bp, were both assembled into a single circular structure.

View Article and Find Full Text PDF