98%
921
2 minutes
20
The sensitivity of plasmon-enhanced spectroscopy (PES) fundamentally arises from the near-field enhancements within plasmonic nanocavities. To further advance PES, we utilized a molecule with exciton modes that are sensitive to the excitation wavelength to functionalize the metal tip. Our findings reveal that exciton modes play a dominant role in shaping near-field patterns. Specifically, "hot spots" within the exciton mode contribute positively to the near-field enhancements, while "dark spots" provide negative contributions. The functionalized tip exhibits pronounced field gradient effects compared to the bare tip, significantly improving sensitivity and selectivity in near-field spectroscopy. Moreover, both the field enhancement and field gradient effects of the functionalized tip can be effectively tuned by adjusting the excitation energy and tilt angle. These results provide crucial insights into near-field modulation for molecules resonating with plasmonic nanocavities. The development of molecule-functionalized tips offers a promising pathway to advancing PES technology, enabling enhanced sensitivity and selectivity for molecular characterization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12340610 | PMC |
http://dx.doi.org/10.1039/d5sc01013f | DOI Listing |
Adv Mater
September 2025
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat de València-Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.
Bioorthogonal chemistry that can be controlled through near-infrared (NIR) light is a promising route to therapeutics. This study proposes a method to intracellularly photoactivate prodrugs using plasmonic gold nanostars (AuNSt) and NIR irradiation. Two strategies are followed.
View Article and Find Full Text PDFHardwareX
September 2025
Universidad Nacional de Colombia, Facultad de Minas, Grupo GITA, Cra. 80#65-223, Colombia.
This paper presents the development of a transmitter that transforms intermittent glucose sensors (isCGM) into a continuous and real-time glucose monitoring system (c-rtCGM), a key component in automated insulin delivery systems. The transmitter enhances the capabilities of conventional intermittent sensors by leveraging Near Field Communication (NFC) technology to capture raw glucose value and automatically transmit it via Bluetooth Low Energy (BLE-Bluetooth 4.2 Dual-Mode) to a smart device every five minutes.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China. Electronic address:
Phase change materials (PCMs)-integrated solar-thermal-electric generators (STEGs) have emerged as a promising platform for sustainable solar energy harvesting, yet faces critical challenges including liquid phase instability, insufficient photothermal efficiency, and limited thermoelectric output. Herein, we engineered hierarchical photonic confinement through the assembly of plasmonic CuS nanoparticles, broadband-absorbing MoS nanosheets, and porous bacterial cellulose (BC). In this tripartite architecture, BC matrix provides robust structural integrity and enhances heat transfer via its 3D interconnected nanoporous structure; MoS nanosheets enable extended photon harvesting across the ultraviolet to near-infrared spectrum; CuS nanoparticles amplify near-field optical effects through localized surface plasmon resonance.
View Article and Find Full Text PDFMicromachines (Basel)
August 2025
Postdoctoral Innovation Practice Base, Chengdu Polytechnic, 83 Tianyi Street, Chengdu 610041, China.
Polarization-sensitive photodetection is critical for advanced optical systems, yet achieving simultaneous high-fidelity recognition of the circularly polarized (CP) and linearly polarized (LP) light with compact designs remains challenging. Here, we use COMSOL 5.6 software to demonstrate a silicon metasurface-integrated MCT photodetector that resolves both CP and LP signals through a single ultrathin platform.
View Article and Find Full Text PDFSensors (Basel)
August 2025
State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Research Center of NDT and Structural Integrity Evaluation, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Three-layer polyethylene (3LPE) coated steel pipelines are currently the preferred solution for global oil and gas transmission. However, external corrosion beneath the 3LPE coating poses a serious threat to pipeline operations. The pressing concern for pipeline safety and integrity involves non-destructive evaluation techniques for the non-invasive and quantitative interrogation of such defects.
View Article and Find Full Text PDF