Exploring maize transcriptional regulatory landscape through large-scale profiling of transcription factor binding sites.

Mol Plant

, State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; ,

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding gene regulatory networks (GRNs) is essential for improving maize yield and quality through molecular breeding approaches. The lack of comprehensive transcription factor (TF)-DNA interaction data has hindered accurate GRN predictions, limiting our insight into the regulatory mechanisms. Here, we performed large-scale profiling of maize TF binding sites. We obtained and collected reliable binding profiles for 513 TFs, identified 394,136 binding sites, and constructed an accuracy-enhanced maize GRN (mGRN+) by integrating chromatin accessibility and gene expression data. The mGRN+ comprises 397,699 regulatory relationships. We further divided the mGRN+ into multiple modules across six major tissues. Using machine learning algorithms, we optimized the mGRN+ to improve prediction accuracy of gene functions and key regulators. Through independent genetic validation experiments, we further confirmed the reliability of these predictions. This work provides the largest collection of experimental TF binding sites in maize and a highly optimized regulatory network, both of which can serve as valuable resources for the study of maize gene function and for crop improvement applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2025.08.009DOI Listing

Publication Analysis

Top Keywords

binding sites
16
large-scale profiling
8
transcription factor
8
regulatory
5
binding
5
maize
5
exploring maize
4
maize transcriptional
4
transcriptional regulatory
4
regulatory landscape
4

Similar Publications

Construction of a bacterial surface display system using split green fluorescent protein (GFP) in Escherichia coli.

Biotechnol Lett

September 2025

Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.

The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.

View Article and Find Full Text PDF

Durotaxis is a driver and potential therapeutic target in lung fibrosis and metastatic pancreatic cancer.

Nat Cell Biol

September 2025

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.

View Article and Find Full Text PDF

A clinical and genotype-phenotype analysis of MACF1 variants.

Am J Hum Genet

September 2025

Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands.

Microtubule-actin cross-linking factor 1 (MACF1) is a large protein of the spectraplakin family, which is essential for brain development. MACF1 interacts with microtubules through the growth arrest-specific 2 (Gas2)-related (GAR) domain. Heterozygous MACF1 missense variants affecting the zinc-binding residues in this domain result in a distinctive cortical and brain stem malformation.

View Article and Find Full Text PDF

High-throughput screening identifies a dual-activity inhibitor of OXCT1 for hepatocellular carcinoma therapy.

Bioorg Chem

September 2025

State Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China;

3-Oxoacid CoA-transferase 1 (OXCT1) plays a crucial role in hepatocellular carcinoma (HCC) progression through its ketolytic and succinyltransferase activities. Despite its potential as a therapeutic target, no small molecules have been developed to inhibit the dual enzymatic activities of OXCT1 specifically. In this study, our structural analysis revealed that the active sites for both enzymatic functions of OXCT1 are located in the same pocket.

View Article and Find Full Text PDF

The myristoylated preS1 domain (myr-preS1) of the hepatitis B virus (HBV) large surface protein is essential for binding to the receptor protein, Na/taurocholate co-transporting polypeptide (NTCP), and for the subsequent internalization of the virus-receptor complex. NTCP, which is expressed in hepatocytes, plays a physiological role in hepatic bile acid transport. Recent cryo-electron microscopy structures of the myr-preS1-NTCP complex were used to analyze virus-receptor interactions at the molecular level.

View Article and Find Full Text PDF