Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents a finite element simulation of thermal damage to a CCD caused by nanosecond multi-pulse laser exposure. The temperature changes in the CCD due to the laser pulses were simulated, and the time evolution of thermal damage was studied. The impacts of different laser parameters such as spot radius, pulse width, and repetition frequency on thermal damage were evaluated. The results indicated that the temperature of the CCD increased with each pulse due to cumulative effects, leading to thermal damage. A smaller laser spot size intensified the temperature rise, accelerating the rate at which different layers in the CCD exceeded the relative melting point of each material. In the case of nanosecond pulse width, variations in pulse width had minimal effects on CCD thermal damage when repetition frequency and average power density were constant. Lower repetition frequencies made it easier to cause melting damage to the CCD when pulse width and average power density were constant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12349418PMC
http://dx.doi.org/10.3390/s25154851DOI Listing

Publication Analysis

Top Keywords

thermal damage
20
pulse width
16
damage ccd
8
repetition frequency
8
average power
8
power density
8
density constant
8
damage
7
ccd
7
laser
5

Similar Publications

This study compared the effects of phosphorylated modified long-chain inulin (PF) with low (PF1), medium (PF3), and high (PF6) degrees of substitution on the rheological, thermal, gluten network depolymerization characteristics, and microstructure of unfrozen and frozen dough. The results showed that PF increased G', G", Tp, and ΔH of unfrozen and frozen dough. Gluten protein analysis revealed that PF significantly increased the SS and α-helix content in gluten, with 3 %FPF3 showing an 11.

View Article and Find Full Text PDF

LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.

View Article and Find Full Text PDF

Background: Pulsed electric field ablation (PFA) techniques for treating cardiac arrhythmias have attracted considerable interest. For example, atrial fibrillation can be effectively treated by pulmonary vein isolation using PFA. However, some arrhythmias originate deep within the myocardium, making them difficult to reach with conventional ablation methods.

View Article and Find Full Text PDF

Physical and chemical properties of exopolysaccharide obtained from whey fermentation by DF60Mi.

J Food Sci Technol

October 2025

Department of Food Technology, Center for Technology and Regional Development, Federal University of Paraíba, João Pessoa, Brazil.

The use of whey as an alternative culture medium for fermentation by lactic bacteria enables generating new products exopolysaccharide (EPS) and avoids environmental and economic damage. This work aimed to characterize the exopolysaccharide obtained from whey fermentation (EPS-LN60) by DF60Mi to identify its physical and chemical properties. The EPS was characterized in terms of total sugar, protein, yield, FTIR, thermogravimetry, calorimetry, monosaccharide composition, optical microscopy and SEM.

View Article and Find Full Text PDF

In this study, tannic acid (TA) was applied to remodel the structure of quercetin-loaded oat globulin fibrils (UF-Que), to form novel fibril-based composite hydrogels (UF-Que-TA) to encapsulate Que. The hydrogels were prepared by varying the [TA]/[UF] ratio to investigate the impact of TA on gelation behavior, microstructure, molecular interactions, and stability of Que. Physicochemical results indicated that the incorporation of TA significantly enhanced the gel strength and promoted non-covalent interactions including hydrogen bonding, hydrophobic interactions, and ionic interactions.

View Article and Find Full Text PDF