Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Fringe projection profilometry (FPP) has been widely applied in industrial 3D measurement due to its high precision and non-contact advantages. However, FPP often encounters measurement problems with high-dynamic-range objects, consequently impacting phase computation. In this paper, an adaptive exposure time selection method is proposed to calculate the optimal number of exposures and exposure time by using an improved clustering method to divide the region with different reflection degrees. Meanwhile, the phase order sharing strategy is adopted in the phase unwrapping stage, and the same set of complementary Gray code patterns is used to calculate the phase orders under different exposure times. The experimental results demonstrate that the measurement error of the method described in this paper was reduced by 25.4% under almost the same exposure times.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12349083 | PMC |
http://dx.doi.org/10.3390/s25154786 | DOI Listing |