Intra-Arterial Administration of Stem Cells and Exosomes for Central Nervous System Disease.

Int J Mol Sci

Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Hokkaido, Japan.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating brain damage and restoring neural connectivity, owing to their multifaceted properties, including anti-apoptotic, anti-inflammatory, neurogenic, and vasculogenic effects. Recent research has also identified exosomes-small vesicles enclosed by a lipid bilayer, secreted by stem cells-as a key mechanism underlying the therapeutic effects of stem cell therapies, and given their enhanced stability and superior blood-brain barrier permeability compared to the stem cells themselves, exosomes have emerged as a promising alternative treatment for CNS disorders. A key challenge in the application of both stem cell and exosome-based therapies for CNS diseases is the method of delivery. Currently, several routes are being investigated, including intracerebral, intrathecal, intravenous, intranasal, and intra-arterial administration. Intracerebral injection can deliver a substantial quantity of stem cells directly to the brain, but it carries the potential risk of inducing additional brain injury. Conversely, intravenous transplantation is minimally invasive but results in limited delivery of cells and exosomes to the brain, which may compromise the therapeutic efficacy. With advancements in catheter technology, intra-arterial administration of stem cells and exosomes has garnered increasing attention as a promising delivery strategy. This approach offers the advantage of delivering a significant number of stem cells and exosomes to the brain while minimizing the risk of additional brain damage. However, the investigation into the therapeutic potential of intra-arterial transplantation for CNS injury is still in its early stages. In this comprehensive review, we aim to summarize both basic and clinical research exploring the intra-arterial administration of stem cells and exosomes for the treatment of CNS diseases. Additionally, we will elucidate the underlying therapeutic mechanisms and provide insights into the future potential of this approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12347363PMC
http://dx.doi.org/10.3390/ijms26157405DOI Listing

Publication Analysis

Top Keywords

stem cells
24
cells exosomes
24
intra-arterial administration
16
administration stem
12
stem cell
12
stem
10
central nervous
8
nervous system
8
cns disorders
8
cell therapies
8

Similar Publications

Refractory cytomegalovirus (CMV) infection is a severe complication following umbilical cord blood transplantation (UCBT). Antiviral agents, the standard first-line therapy, are limited by toxicity and resistance without robust T-cell immunity. We evaluated third-party donor (TPD)-derived CMV-specific T cells (CMVSTs) as a treatment option.

View Article and Find Full Text PDF

Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.

View Article and Find Full Text PDF

Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.

View Article and Find Full Text PDF

Objective: Progesterone (PG) and its target, progesterone receptor (PGR), are important regulators in inflammatory diseases. This study aimed to investigate the specific role of PG in periodontitis and to elucidate the underlying mechanisms involving PGR.

Methods: Women with periodontitis, including 250 with PG deficiency, 250 with PG supplementation, and 245 controls (normal PG) were enrolled.

View Article and Find Full Text PDF

Patients with primary plasma cell leukemia (pPCL), particularly those with extramedullary disease (EMD), face a poor prognosis even with chimeric antigen receptor (CAR)-T cell therapy. This case report describes a patient with relapsed/refractory pPCL and life-threatening malignant pleural effusion (PE) treated with intrapleural CAR-T cells targeting B-cell maturation antigens. CAR-T cell expansion within the PE was observed, along with a rapid reduction in leukemia cell count and PE volume.

View Article and Find Full Text PDF