98%
921
2 minutes
20
Hydraulic asphalt concrete (HAC) is susceptible to performance deterioration under long-term water immersion. This study conducted compressive, tensile, and bending tests on HAC under various immersion times (0-96 h), established a multidimensional performance evaluation method, and developed a service-life prediction model for long-term water immersion. The average relative error between test values and predicted values was less than 5%, validating the model's effectiveness and applicability. Results indicate that the rate of mechanical property degradation exhibits stage-dependent characteristics with immersion time, and the water damage resistance of alkaline aggregate is significantly superior to that of acidic aggregate. The predictive model shows that after 192 h of immersion, the retention rate of key mechanical properties for the alkaline aggregate reaches 92.71%, while that for acidic aggregate was only 73.85%. This study establishes a predictive model that provides a theoretical basis for assessing the lifespan of HAC under long-term immersion conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12348327 | PMC |
http://dx.doi.org/10.3390/ma18153706 | DOI Listing |
Biol Trace Elem Res
September 2025
Department of Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
The aim of the study was to evaluate the toxic metals (TMs) pollution, bioaccumulation and its potential health risk via consumption of different vegetables irrigated by different water sources released from industrial estates of Khyber Pakhtunkhwa. Water (fresh and waste), soil and vegetables samples were collected in triplicates and acid digested. Digestion of samples were followed by evaporation and filtration and then assessed for TMs via atomic absorption spectrophotometer.
View Article and Find Full Text PDFNeurol Res
September 2025
Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
Objectives: This study aimed to investigate the effects of repeated exposure to sevoflurane as an anesthetic agent during various developmental stages, namely neonatal, preadolescent, and adult, on behavioral, synaptic, and neuronal plasticity in male and female Wistar rats.
Methods: Rats were exposed to sevoflurane during three developmental stages: neonatal (PN7), pre-adolescence (PN28), and adulthood (PN90). Behavioral performance was evaluated with the Morris Water Maze.
Environ Microbiol Rep
October 2025
Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.
Plastic pollution is a major environmental challenge, with millions of tonnes produced annually and accumulating in ecosystems, causing long-term harm. Conventional disposal methods, such as landfilling and incineration, are often inadequate, emphasising the need for sustainable solutions like bioremediation. However, the bacterial biodiversity involved in plastic biodegradation remains poorly understood.
View Article and Find Full Text PDFPlant Cell Rep
September 2025
Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
Genome doubling did not enhance drought tolerance in alfalfa, but may set the stage for long-term adaptation to drought through a novel transcriptional landscape. Whole genome duplication (WGD) has been shown to enhance stress tolerance in plants. Cultivated alfalfa is autotetraploid, but diploid wild relatives are important sources of genetic variation for breeding.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China.
Traditional dynamic membranes (DMs) are plagued by membrane fouling and low performance during long-term operation. In recent years, researchers have developed various functionalized dynamic membranes (FDMs) derived from DMs, employing different functional materials to provide an economically viable and promising solution for wastewater treatment. Nevertheless, there remains a gap in the comprehensive understanding of FDMs and the challenges encountered in their application.
View Article and Find Full Text PDF