98%
921
2 minutes
20
The CRISPR/Cas system represents a transformative breakthrough in genome editing technology, featuring three principal effector proteins with distinct functionalities: Cas9, which induces site-specific double-strand breaks guided by a single guide RNA, enabling precise gene knockout and knock-in modifications; Cas12, which mediates targeted DNA cleavage through cis-activity while exhibiting nonspecific trans-cleavage of single-stranded DNA, a property exploited for ultrasensitive nucleic acid detection in molecular diagnostics; and Cas13, an RNA-guided RNase that specifically degrades complementary RNA transcripts, demonstrating significant potential for antiviral therapies and transcriptome regulation. Despite these advances, the clinical translation of CRISPR/Cas systems faces substantial challenges, particularly in achieving efficient and controllable delivery. This reviewsystematically examines current delivery modalities for CRISPR/Cas systems, with particular emphasis on the implementation of DNA-based functional materials as advanced delivery vehicles. The integration of multifunctional DNA nanostructures with diverse CRISPR/Cas systems may facilitate the development of integrated theranostic platforms, thereby advancing precision medicine through synergistic bioengineering approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202500357 | DOI Listing |
Microlife
August 2025
Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, D-79104 Freiburg, Germany.
Clustered regularly interspaced palindromic repeats (CRISPR)-associated transposons (CAST) consist of an integration between certain class 1 or class 2 CRISPR-Cas systems and Tn7-like transposons. Class 2 type V-K CAST systems are restricted to cyanobacteria. Here, we identified a unique subgroup of type V-K systems through phylogenetic analysis, classified as V-K_V2.
View Article and Find Full Text PDFMed Sci (Paris)
September 2025
CIRI, Centre international de recherche en infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.
The accumulated knowledge on the biology of the HIV-1 virus has led to the emergence of technologies that exploit the architecture of retroviruses and their integration or vectorization properties. This field of study constitutes retroviral vectorology, democratized in laboratories by the use of lentiviral vectors. By hijacking retroviral assembly, other systems are emerging and are increasingly mentioned in recent literature.
View Article and Find Full Text PDFPLoS One
September 2025
Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
Zygotes are used to create genetically modified animals by electroporation using the CRISPR-Cas9 system. Such zygotes in rats are obtained from superovulated female rats after mating. Recently, we reported that in vivo-fertilized zygotes had higher cryotolerance and developmental ability than in vitro-fertilized zygotes in Sprague Dawley (SD) and Fischer 344 rats.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan.
T-cell therapies have proven to be a promising treatment option for cancer patients in recent years, especially in the case of chimeric antigen receptor (CAR)-T cell therapy. However, the therapy is associated with insufficient activation of T cells or poor persistence in the patient's body, which leads to incomplete elimination of cancer cells, recurrence, and genotoxicity. By extracting the splice element of PD-1 pre-mRNA using biology based on CRISPR/dCas13 in this study, our ultimate goal is to overcome the above-mentioned challenges in the future.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
is a commensal bacterium that colonizes the gut of humans and animals and is a major opportunistic pathogen, known for causing multidrug-resistant healthcare-associated infections (HAIs). Its ability to thrive in diverse environments and disseminate antimicrobial resistance genes (ARGs) across ecological niches highlights the importance of understanding its ecological, evolutionary, and epidemiological dynamics. The CRISPR2 locus has been used as a valuable marker for assessing clonality and phylogenetic relationships in .
View Article and Find Full Text PDF